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When looking at our hand, we simultaneously feel it based on tactile and proprioceptive cues. 19 
However, seeing a fake hand being touched while our real hand is touched (but hidden from view), 20 
we experience the fake hand as belonging to us (ownership) and recalibrate our perceived hand 21 
position. Using computational modelling and data collected from an automated, machine-22 
controlled experimental setup, we extracted, on a subject-by-subject basis, the maximal distance 23 
between the real and fake hand (threshold) and the visuo-tactile stimulation conditions that subjects 24 
tolerate before the shift in their perceived hand position breaks down. The model predicts, and 25 
experiments confirm, that ownership breaks down discontinuously near this threshold, such that 26 
subjects sometimes perceive their hand close to the fake hand, and sometimes close to the real hand. 27 
By computing the limits of ownership and limb position perception, our model paves the way for 28 
computational approaches to the embodiment of limbs. 29 30 
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Introduction 31 
Recent investigations into lower-level multisensory and sensorimotor aspects of self-consciousness 32 
have led researchers to define several specific bodily experiences1–6. One of these bodily 33 
experiences is the feeling that our body and its parts belong to us (body ownership). In particular, 34 
the perception of upper limb ownership has been extensively studied using the rubber hand illusion 35 
(RHI7). In the RHI, participants watch a fake hand being stroked in synchrony with stroking on 36 
their own (occluded) hand. This manipulation alters tactile perception and induces the illusion that 37 
touch is felt on the fake hand and that the fake hand feels like one’s own hand7–9.  These subjective 38 
effects are often accompanied by a shift in the perceived position of one’s own hand towards the 39 
fake hand (referred to as localization error in this manuscript but also known as drift in the 40 
cognitive neuroscience literature) as well as physiological changes (e.g. body temperature changes) 41 
10,11, which are absent or weaker when the stroking provided to the real hand and the fake hand is 42 
not synchronous7–10,12. The illusion is reduced or abolished when the fake hand does not match the 43 
real hand’s posture9, when the fake hand is placed too far from the real hand13, or when the 44 
stroking is applied in different directions14. 45 
 46 
Although it has been speculated that illusory hand ownership and its associated shift in perceived 47 
hand position occur as the brain’s perceptual systems attempt to interpret the conflicting visual, 48 
tactile, and proprioceptive information15–17, there is currently no computational account of the RHI 49 
and no comprehensive understanding of the role that visual, tactile (stroking or vibrations), and 50 
proprioceptive stimulation parameters (e.g. duration, synchrony, and limb position) play on illusory 51 
hand ownership and perceived hand position.  Since systematic changes in illusory hand ownership 52 
can also be induced in virtual environments18, we used automated, machine-controlled stroking 53 
with a virtual-hand setup (Fig. 1) to investigate whether computational modeling can account for 54 
the measured localization errors of perceived hand position. We show that a Bayesian model of 55 
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causal inference can predict the conditions under which humans fuse proprioceptive and visual 56 
information during the RHI. Fusion does not occur if the distance between the real hand and the 57 
fake hand is too large or if both the real and fake hands are stimulated asynchronously for extended 58 
periods of time. Our model and data suggest that, for a critical range of separations between the 59 
fake and real hand, perceived hand position switches discontinuously between a fused and a non-60 
fused, proprioception-dominated position.  61 
 62 
 63 
Results 64 
Pilot experiment 65 
We first tested if illusory hand ownership was induced using our automated experimental setup in a 66 
comparable fashion to that described in earlier studies using experimenter-applied stroking on a 67 
physical rubber hand7,9,10 or on a virtual hand18. To this aim, we performed a pilot experiment 68 
employing a 2x2 factorial design with the factors Stroking and Posture8 where visuo-tactile 69 
stroking was provided synchronous or asynchronously on a virtual hand with a congruent or 70 
incongruent orientation with respect to the real hand (Fig. 2A; see Methods). Statistical analysis on 71 
questionnaire scores relevant to illusory ownership revealed that participants experienced illusory 72 
ownership for the virtual hand during synchronous stroking in a congruent hand position (p<0.01, 73 
Post-hoc Wilcoxon matched-pairs test; Fig. 2B; Table 1), but not during asynchronous stroking or 74 
if the fake hand was in an incongruent position (all p>0.05). 75 
 76 
Main experiment: Visuo-proprioceptive separation 77 
Our automated setup enabled us to systematically vary, on a trial-by-trial basis, the distance 78 
between the virtual and real hand (visuo-proprioceptive separation) and the delay between tactile 79 
and visual stimulation via animations on the virtual hand (visuo-tactile delay). If participants were 80 
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not at all influenced by the position of the seen virtual hand, then the subjects’ perceived hand 81 
position would be independent to the position of the virtual hand. We found that the reported hand 82 
position exhibited a systematic localization error towards the virtual hand that increased with the 83 
magnitude of visuo-proprioceptive separation. For synchronous conditions (visuo-tactile delays < 84 
0.2s), we observed a mean localization error of 5±3cm for separations from 0 to 10cm, and a mean 85 
localization error of 10±5cm for separations of 10 to 20cm. Additionally, we found a strong 86 
positive correlation between localization error and visuo-proprioceptive separation for the interval 87 
0-20cm (Pearson’s product-moment test: t = 21.5, df = 766, p < 2e-16, correlation±95% 88 
confidence interval (CI): 0.615±0.045). For the interval 20-30cm, we found a negative correlation 89 
(Pearson’s product-moment test: t = -2.5, df = 584, p = 0.01, correlation±95% CI: -0.10±0.08), 90 
suggesting that the participants’ perceived hand position was influenced by visual information 91 
stemming from the virtual hand in these ranges (Fig. 3A). For the range 30-40cm, we found no 92 
significant correlation (Pearson’s product-moment test: t = 0.4, df = 191, p = 0.7, correlation±95% 93 
CI: 0.03±0.14), suggesting a weak or nonexistent relationship between the perceived hand position 94 
and the virtual hand position. 95 
 96 
Main experiment: Visuo-tactile stroking synchrony 97 
How does visuo-tactile delay (Z) between tactile stimulation and the visual animation on the virtual 98 
hand modulate the perceived hand position? For visuo-proprioceptive separations of less than 10cm, 99 
we found that delays of Z = 0-1s had no significant influence on the perceived hand position. 100 
However, for separations between 20 and 30cm, the perceived hand position was significantly 101 
shifted towards the virtual hand for near-synchronous stimulation (Z < 0.2s) as compared to 102 
asynchronous stroking (Z = 0.6-1s; Tukey multiple comparisons test: p = 0.003, Fig. 3A). The 103 
largest localization error was found for near-synchronous stroking when the real and virtual hands 104 
were approximately 15 to 25cm apart. Importantly, under conditions of near-synchronous stroking 105 
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(Z < 0.2s) and for visuo-proprioceptive separations smaller than 20cm, the perceived hand position 106 
localization error was influenced by visuo-proprioceptive separation (linear regression: R2 = 0.37, 107 
F = 450, df = 764, beta =  0.56). By contrast, we found a broader distribution of perceived hand 108 
positions when the visuo-proprioceptive separation was between 20 and 30cm, indicating that hand 109 
localization was much less influenced by visuo-proprioceptive separation for larger separations 110 
(linear regression: R2 = 0.01, F = 6.4, df = 584, beta =  -0.3). The spread of localization errors for 111 
all participants is shown in Figure 3A in these different visuo-proprioceptive separation ranges.  112 
 113 
Model: Rationale and Formulation 114 
In order to understand the distribution of perceived hand positions, we developed a model of how 115 
subjects integrate sensory information from vision (arising from the virtual hand on the head-116 
mounted display) and proprioception (hand position as estimated from proprioceptive signals from 117 
the subject’s real hand). Additionally, we incorporated into our model how this integration is 118 
influenced by ownership as manipulated through additional visuo-tactile stimulation (stroking of 119 
the virtual and real hands with different visuo-tactile delays).  120 
 121 
If the real hand is at position Q, the position of the hand as estimated by proprioceptive cues is 122 
formulated as Xp = Q + ηp , where the noise ηp is assumed to be Gaussian distributed with a 123 
standard deviation σp that reflects the lack of precision of the proprioceptive information. 124 
Analogously, we modeled the imprecision of visual cues with a Gaussian noise of standard 125 
deviation σv.. The results discussed below aggregates data from all stroking duration values, except 126 
where otherwise noted. 127 
 128 
To test whether a Bayesian ideal observer model with access to visual, tactile, and proprioceptive 129 
cues provides a reliable explanation of the perceived hand position in the RHI, we hypothesized 130 
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that the perceived hand position is based on a combination of prior beliefs (top-down influences) 131 
and sensory input to three sensory modalities (vision, proprioception, touch). The model relies on 132 
three assumptions: (i) incoming visual and proprioceptive information is independent, i.e. the firing 133 
of primary visual neurons and proprioceptive neurons are statistically independent for a given 134 
sensory stimulus; (ii) visuo-tactile synchrony conveys information about hand ownership; and (iii) 135 
prior to integrating visual and proprioceptive information, the subject makes a (likely unconscious) 136 
top-down decision as to whether the virtual hand is one’s own (hand ownership). Assumptions (ii) 137 
and (iii) are based on findings from previous RHI studies demonstrating that visuo-tactile 138 
synchrony modulates hand ownership and that top-down information can modulate ownership.  139 
 140 
Our RHI model is composed of two sub-models. First, a perception model describes how the 141 
participants form and maintain their internal percepts of their hand position as well as ownership of 142 
the virtual hand. Second, a response model captures subject reports when asked about his or her 143 
percept. In analogy to the model proposed in19, our perception model is an encoder of sensory 144 
related information, while our response model produces meaningful decisions by decoding the 145 
representation formed by the sensory encoder. 146 
 147 
Suppose that the subject believes that the virtual hand is his or her own hand and that their real 148 
hand is located at position Q. In this case, both the visual (Xv) and proprioceptive (Xp) position 149 
signals ought to be distributed around the real hand position. Using assumption (i), we define the 150 
stimulus likelihood: 151 
 152 

p(Xp, Xv | Q) = N(Xv;Q,σ v )N (Xp;Q,σ p )    (1) 153  154 
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where N(x;μ,σ ) is a Gaussian distribution evaluated at x, with mean µ and standard deviationσ. 155 
This simple model has been successfully used to explain visuo-auditory, visuo-spatial, and visuo-156 
proprioceptive integration tasks20–25. 157 
 158 
We further characterized visuo-tactile synchrony as the delay Z between the visual and vibrotactile 159 
stroking patterns. Due to noise in the sensory systems, we modeled the perceived delay to fluctuate 160 
around 0s with a small variance σ Z . Since visuo-tactile delay is always positive, we model its 161 
likelihood with an exponential distribution E(Z,σ Z ) = exp(− Z

σ Z

) /σ Z . Taking into account this 162 
visuo-tactile likelihood term, we extend the visuo-proprioceptive likelihood in Eq. (1) to: 163 
 164 

p(Xp, Xv, Z | Q) = N(Xv;Q,σ v )N(Xp;Q,σ p )E(Z,σ Z )             (2) 165  166 
This equation defines the distribution of perceptual measurements from the three sensory systems 167 
(vision, proprioception and visuo-tactile delay) if he or she believes that their hand is at position Q 168 
and that the seen hand is their own hand. If one does not believe the seen hand to be his or her own 169 
hand, the visual position signal no longer fluctuates around the real hand position, but rather around 170 
a mean Q, whose value is unknown to the subject. Analogously, the visuo-tactile delay also 171 
fluctuates around an unknown mean Z . Because Q  and Z  are both unknown, we marginalized 172 
both variables over a large range in both the visual and visuo-tactile delay domains using a flat 173 
prior, p(Q,Z ) = ϑ , where ϑ  is a constant. If the size of this range is much larger than the size of 174 
the visual modality’s standard deviation (σ v ) and the visuo-tactile standard deviation (σ Z ), the 175 
marginalized likelihood can be well approximated by:  176 
 177 
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p(Xp, Xv, Z,Q, Z | Q)dQ dZ ≈ N(Xp;Q,σ p )ϑ . 178 
 179 
Given this, the general likelihood function that accounts for both possible ownership beliefs is 180 
defined as: 181 
 182 

p(Xp, Xv, Z | Q, own) =
N(Xv;Q,σ v )N(Xp;Q,σ p )E(Z,σ Z ) if own =1

N (Xp;Q,σ p )ϑ if own = 0






  (3) 183 

 184 
where the binary variable ‘own’ models the cognitive belief that one has regarding ownership of the 185 
virtual hand. Because the brain has neither direct access to the real hand position (Q) nor the 186 
ownership assignment of the virtual hand (own=0,1), it must deduce both values from sensory cues.  187 
 188 
The resulting model (Eq. (3); Fig. 4A) can be seen as an extension of previously proposed models 189 
for causal inference26–28. However, in contrast to these previous models, our model accounts for 190 
three sensory modalities rather than two. Though our model is reminiscent of “window of 191 
integration” models29–31, where the sensory delay (or “integration window”) considers a delay 192 
between the percepts of two fused sensory modalities (e.g. visual and auditory), our model 193 
accounts for delay as a third sensory modality (tactile). 194 
 195 
To an ideal observer receiving a multisensory stimulus {Xv , Xp ,Z}, knowledge of variables Q and 196 
own is obtained via the posterior distribution using Bayes formula: 197 
 198 

p(Q,own | Xp , Xv ,Z ) =
p(Xp , Xv,Z |Q,own)p0 (Q,own)

p(Xp , Xv ,Z | Q,own)p0 (Q,own) dQ
own


     (4) 199 
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 200 
where p0 (Q,own) is the prior knowledge that the subject has about latent variables {Q,own}.  201 
The left side of the equation, p(Q,own | Xp , Xv ,Z ) , is also known as the belief state, as it provides a 202 
measure of how much an ideal observer believes that a particular pair of values {Q,own} 203 
corresponds to the true hand position and the true ownership state. The model in Eq. (4) differs 204 
from standard multisensory integration models20–25 because it incorporates the concept of 205 
ownership and takes into account three sensory modalities: vision, touch and proprioception. 206 
 207 
Though participants in RHI experiments report their perceived hand position, we do not have 208 
access to their internal ownership assignment. By marginalizing over the ownership variable, we 209 
obtain: 210 
 211 

p(Q | Xp , Xv ,Z ) =
p(Xp , Xv ,Z | Q,own)p0 (Q,own)

own


p(Xp , Xv ,Z | Q,own)p0 (Q,own) dQ
own


    (5) 212 
 213 
We assume the prior p0 (Q,own) to be flat for Q, but for consistency and generalization purposes, 214 
we consider the prior for own to be adaptive and parameterized as p0 (Q,own = 1) = c , where 215 
c ∈[0,1].  216 
 217 
By substituting p0 (Q,own) into Eq. (5) and integrating over Q , we obtain the final probability 218 
density function in the form of a Gaussian Mixture Model with a mixture coefficient α that is also a 219 
function of the perceptual stimuli: 220 
 221 



 11

p(Q Xp, Xv, Z ) = αN(Q; Xp,σ p )+ (1−α)N(Q;λXv + (1− λ)Xp,1 /
1

σ p
2

+ 1

σ v
2

)

α = 1+ c

ϑ (1− c)
N (Xv − Xp;0, σ p

2 +σ v
2 )E(Z,σ Z )











−1

∈ [0,1]

λ = σ p
2 / (σ p

2 +σ v
2 )

  (6) 222 
 223 
The first term on the right-hand side in the first line of Eq. (6) accounts for the situation where the 224 
subject does not believe that the seen virtual hand is their own hand and therefore relies only on 225 
proprioceptive cues. This term contributes to the final estimate with a weight α. The second term 226 
(weight: 1−α ) describes a Gaussian with a center that represents a weighted average between 227 
visual (weight λ ) and proprioceptive information (weight: 1 - λ). Note that the constants ϑ  and c 228 
can be merged into a single parameter η=c/[ϑ(1-c)] without a loss of generality. Thus, the set of 229 
free parameters in our model is {σZ, σv, σp}. 230 
 231 
The variable α has a particularly important meaning, as 1−α  is the posterior probability of the 232 
ownership of the virtual hand given the prior and the sensory input, namely: 233 
1−α = p(own = 1 | stimulus). If ownership of the virtual hand is certain, i.e. 234 
p(own = 1| stimulus) = 1, then the position λXv + (1− λ)Xp  from Eq. (6) is equivalent to the 235 

Maximum Likelihood Estimate (MLE) of the perceived hand position when the subject fuses vision 236 
and proprioception. 237 
 238 
Model: Unimodal sensory estimates 239 
Estimating proprioceptive noise σp and visual noise σv ideally requires two additional, independent 240 
experiments designed specifically to measure these parameters. Due to the large amount of data 241 
required for our statistical analysis, performing these supplementary measurements would have 242 
substantially increased the time required per subject, which was already quite long (2 - 3 hours per 243 
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subject; see Methods). Thus, rather than performing three independent experiments, we decided to 244 
extract the visual and proprioceptive perceptual noise from our data set based on observations from 245 
previous studies that have shown that (i) perceived hand position relies solely or mostly on 246 
proprioceptive signals if the fake hand is placed far away (e.g. >30cm) from the real hand13 and (ii) 247 
visual and proprioceptive information is fused for small (e.g. <10cm) visuo-proprioceptive 248 
separations21. We therefore estimated the proprioceptive standard deviation (σp ≈ 7.2 cm; see 249 
Methods) from data points with large visuo-proprioceptive separations (>30 cm) and the visual 250 
standard deviation (σv ≈ 3.8cm; see Methods) from small visuo-proprioceptive separations (<10cm). 251 
To ensure that our fitting results were not dependent on the choice of the ranges selected for small 252 
and large visuo-proprioceptive separations, we simultaneously fit all parameters using the full data 253 
set without partitioning the data and found that the joint fit yielded results compatible with to those 254 
obtained with our splitting approach (σp: 6.8 ± 0.5cm; σv: 4.6 ± 0.4cm; mean±95% CI). 255 
 256 
Ownership 257 
The task of the subject is to infer the position of their real hand from the three sources of sensory 258 
information (i.e., proprioception, vision, visuo-tactile delay). In contrast to classical sensor fusion 259 
paradigms20–25, the RHI paradigm has the additional feature that the visual information source may 260 
or may not coincide with the participant’s own hand. Thus, our model is formulated such that 261 
visual and proprioceptive sources are combined only if the subject has reason to believe that both 262 
vision and proprioception relate to the same object in the world. More precisely, we hypothesized 263 
that a probabilistic ownership variable is assigned for the seen virtual hand that can take one of two 264 
states: ‘own=1’ indicates that the virtual hand is ‘mine’ (i.e. the participant’s real hand) and 265 
‘own=0’ indicates that the virtual hand is ‘not mine’ (i.e., not the participant’s real hand; Fig. 4B, 266 
top right node). The perceived visuo-tactile delay was incorporated into the model under the 267 
assumption that if ‘own=1’, the perceived visuo-tactile delay is small (i.e. on the order of the tactile 268 



 13

delay), whereas if ‘own=0’, the perceived visuo-tactile delay is evenly distributed across a broad 269 
range. 270 
 271 
Based on the unimodal estimates of the precision in the visual and proprioceptive channels (see 272 
above), our model assigns a probability of perceived ownership over the full range of visuo-273 
proprioceptive separations from 0 to 40cm for both near-synchronous and asynchronous visuo-274 
tactile stimulations (see Methods). This analysis revealed that for near-synchronous stroking at 275 
separations less than 20cm, the model reliably generates the percept of owning the virtual hand 276 
whereas separations greater than 30cm do not generally give rise to ownership (Fig. 4C).  The 277 
ownership threshold, defined as the visuo-proprioceptive separation where subjects report 278 
ownership with 50% probability, was found to be approximately 25cm.  279 
 280 
Model: Visuo-proprioceptive separation and stroking synchrony predictions 281 
The model accurately predicts the observed distribution of localization errors in perceived hand 282 
position across the large range of visuo-proprioceptive separations that we measured in our 283 
experiment (Figs. S1A, S1B). It predicts that for near-synchronous stimulation and visuo-284 
proprioceptive separations of 20 to 30cm, the distribution of localization errors has two peaks (Fig. 285 
3B). The first, sharp peak accounts for large localization errors caused by trials where our model 286 
assigns hand ownership (and therefore fuses visual and proprioceptive cues). The second, broad 287 
peak around zero-localization error accounts for trials where our model does not assign ownership 288 
for the virtual hand.  289 
 290 
Evidence for a double-peaked distribution was found by fitting a Gaussian Mixture Model (GMM) 291 
to the data for near-synchronous trials (Z < 0.2s) and testing a double-peaked GMM versus a 292 
single-peaked GMM using the Bayesian Information Criterion (BIC; see Methods) for the 293 
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separation range of 20-30cm. This analysis was first performed on the group data, which showed 294 
the double-peaked model to better explain the distribution (single-peaked GMM: log-likelihood=-295 
780, BIC=1571; double-peaked GMM: log-likelihood=-769, BIC=1560). For individual subject 296 
analyses, however, we found the single-peaked GMM to be better for 7 subjects, the double-peaked 297 
GMM better for 5 subjects, and for the 6 remaining subjects, there was not enough data in the 298 
visuo-proprioceptive separation range to reliably perform the analysis. 299 
 300 
The double-peaked histogram might be caused by inter-individual differences such that at a 301 
separation of 25cm, some subjects assign ownership whereas others do not. Alternatively, it might 302 
arise intra-individually in subjects who, for the same stimulus, sometimes assign ownership and 303 
sometimes do not. We tested for each of these hypotheses and found that the ownership threshold 304 
varies both between and within single subjects (Fig. 4D), and that the ownership response is 305 
double-peaked for visuo-proprioceptive separations that are close to the threshold of 50% 306 
ownership probability for 5 subjects out of 18. 307 
 308 
Model Comparisons 309 
Finally, we confirmed the non-linearity of the relationship between the visual, proprioceptive, and 310 
tactile cues by comparing our proposed model with predictions from a linear sensory integration 311 
model that does not account for ownership or visuo-tactile cues. To this end, we used the Deviation 312 
Information Criterion (DIC, see Methods), a measure of model goodness that takes into account 313 
both the goodness-of-fit and the model complexity, and where smaller DIC values indicate better 314 
models. Our analyses showed the present model to better explain the empirical data than a two-315 
sense linear model, both for the group data and for 10 out of 17 individual participants (Fig. 5A).  316 
 317 
Single subject detailed analysis 318 
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To test that our model makes accurate predictions on a single-subject basis, we performed a 319 
detailed analysis for one of the double-peaked subjects (Fig. 6). In the visuo-proprioceptive 320 
separation range of 0 – 40cm, our analyses showed the model to not significantly differ from the 321 
observed data (visuo-propriceptive separation 0-10cm: df=18, p=0.09, N=11; 10-20cm: df=12, 322 
p=0.30, N=6; 20-30cm: df=104, p=0.13, N=50; 30-40cm: df=28, p=0.27, N=6; χ 2 test). 323 
 324 
Stroking duration 325 
Previous RHI studies have manually applied stroking using a large variety of different stroking 326 
durations (Table 2), but little work to date has investigated whether longer trials with more strokes 327 
are more efficient than shorter trials in inducing illusory hand ownership and larger localization 328 
errors. We found no significant effect on localization error between short trials (fewer than 40 329 
strokes) and long trials (more than 45 strokes) for near-synchronous stroking. However, for 330 
asynchronous stroking, long trials at large visuo-proprioceptive separations (20-30cm) induced 331 
significantly less localization error than short trials (Tukey multiple comparisons test, adjusted p-332 
value = 0.012; Fig. 7). Thus, we found that subjects are more likely to detect the inconsistency 333 
between the visual and tactile cues (visuo-tactile delay) in long trails than in short trials.  334 
 335 
 336 
Discussion 337 
A fully automated RHI setup allowed us to perform a systematic analysis of the relationship and 338 
relative importance of visual, proprioceptive, and ownership cues (manipulated through an 339 
additional visuo-tactile stimulus) in their contribution to perceived hand position. Earlier work 340 
studied has ownership and perceived hand position with virtual hands presented on a distanced, 341 
rear projection screen18, a monitor32, or a video-projector33. Here, we built upon these earlier 342 
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approaches and projected an immersive virtual reality scenario in a head-mounted display where 343 
the virtual hands were seen as extending from our participants’ bodies in stereoscopic vision34.  344 
 345 
In contrast to previous RHI studies using binary, factorial designs7,9,10, our design tested the effects 346 
of visuo-proprioceptive separation13, delay and duration in a continuous fashion across a large 347 
range of values (Table 2). Importantly, the present data show that the visuo-proprioceptive 348 
separation of approximately 15-25cm is optimal to induce changes in perceived hand position that 349 
depend on visuo-tactile delay, in correspondence with these previous studies that use this 350 
separation range to induce the illusion7,9,10. At small separations (<10cm), we found that 351 
localization errors were not influenced by delay35, whereas large separations (>30cm) induced 352 
small localization errors with a large variability that reflects the unreliability of proprioceptive 353 
signals13. Extending data from a recent behavioral RHI study35, we also found that prolonged 354 
stimulation did not boost, but rather significantly decreased localization error in perceived hand 355 
position during asynchronous stimulation for large visuo-proprioceptive separations (20-30cm), 356 
whereas no effects of duration were observed during near-synchronous stimulation.  357 
 358 
Although the perceived hand position was on average biased towards the virtual hand for all 359 
separations between 0-40cm, large localization errors were induced most reliably under conditions 360 
of near-synchronous stroking at separations of 10-20cm. For separations of 20-30cm, the 361 
localization error was also large, but unreliable (Fig. 3B) and subject-dependent (Fig. 4D). Our 362 
hierarchical Bayesian inference model accounts not only for the average localization error in 363 
perceived hand position as a function of separation and delay, but also for the observed variance, or 364 
unreliability of the localization errors within and across subjects7.  365 
 366 
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Our model predicts that the distribution of localization errors in perceived hand position should be 367 
double-peaked for visuo-proprioceptive separations that correspond to an ownership probability 368 
around 50%. Our experimental data confirmed this prediction, showing this critical visuo-369 
proprioceptive separation threshold to be approximately 20-25cm when averaged across subjects 370 
(Fig. 3B). Importantly, this threshold can be extracted for each individual subject (Fig. 4D), 371 
representing significant progress beyond previous experimental settings that relied on averaging 372 
across large subject samples9,35. This threshold is important for three reasons. First, perceived hand 373 
position is strongly and reliably influenced by visuo-tactile delay for separations around the 374 
threshold. Second, for separations around the individual threshold for a given subject, our model 375 
shows that the subject assigns hand ownership and therefore fuses visual and proprioceptive 376 
information for some trials (peak around large localization error values; Fig 3B; Fig 6), but 377 
generates zero localization error and refuses ownership for other trials (shoulder around smaller 378 
localization error values). Third, for separations significantly below this threshold, our model 379 
systematically assigns hand ownership and therefore predicts reliable fusion of visual and 380 
proprioceptive information. On the other hand, for separations significantly above the threshold, it 381 
predicts a refusal of ownership and relies exclusively on proprioceptive signals. Previous 382 
computational models of visuo-proprioceptive integration tasks21,23 have not incorporated the 383 
possibility of assigning body ownership and therefore fail to explain the variability of the 384 
localization error and changes in the mean localization error across a large range of visuo-385 
proprioceptive separations.   386 
 387 
The unimodal variances (σ p  and σ v ) that we observed are substantially higher than values 388 
previously reported using a setup that did not use virtual reality21. However, direct comparison 389 
between our study and this previous work is difficult due to several methodological differences. 390 
First, in the present setup, participants were asked to report their perceived hand position verbally 391 
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whereas in the previous work, participants were asked to point to their unseen hand using their 392 
other hand. Recent research has described differences in hand localization error depending on 393 
whether hand motor movements or verbal estimations were employed12. Second, the previous work 394 
only manipulated visual and proprioceptive cues whereas we estimated the unimodal variances 395 
from a dataset where a third sensory modality was implicated (the visuo-tactile stimulus). It 396 
remains to be studied whether estimating unimodal variances from data obtained while 397 
manipulating additional sensory modalities leads to inflated unimodal estimates. Finally, the 398 
present study used a virtual reality based-setup (requiring that participants internally calibrate their 399 
hand position in real-space coordinates to those in the virtual space), whereas the data reported by 400 
van Beers and colleagues were acquired using robotic stimulation without virtual reality. Though 401 
we took great care to align and calibrate the real and virtual environments, the internal mappings 402 
for each participant may be imprecise and thereby alter single-sense estimates. Nevertheless, 403 
despite the magnitude differences in visual and proprioceptive estimates across these studies, we 404 
note that all experimental conditions in our study were carried out under the same experimental 405 
settings and thus that all observed statistical differences remain valid. 406 
 407 
The present model is reminiscent of a causal inference model that was developed to explain 408 
illusory perceptions during the ventriloquist effect, a visuo-auditory illusion26,36. Both the RHI and 409 
the ventriloquist effect involve misperception of the location of an object. In the former, the object 410 
is the position of the subjects’ own touched hand in relation to the fake hand that is seen being 411 
touched (visuo-proprioceptive conflict). In the latter, it is the position of the ventriloquist’s mouth 412 
with respect to the seen “speaking” puppet (visuo-auditory conflict). In both illusions, the observer 413 
has to decide whether the different sensory signals (visual, proprioceptive for the RHI; auditory, 414 
visual for the ventriloquist effect) arise from a single cause (fake hand; “speaking” puppet) or from 415 
two separate causes (real or fake hand; ventriloquist or puppet). The parallels between the present 416 
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RHI model and previous causal inference models26,36, and the analogy to earlier models of cue 417 
integration and fusion20–25, suggest that probabilistic inference processes are powerful tools to 418 
understand multisensory perception and subjective experience. However, our RHI model 419 
additionally includes distinct features of bodily processing related to the self as the misperceived 420 
object is part of the observer’s body and the occluded real hand gives rise to additional tactile 421 
signals that are not available in the ventriloquist effect. 422 
 423 
One of the advantages of a computational model for illusory hand ownership is that it might 424 
eventually be used to design and extract the optimal stimulation parameters to induce hand 425 
ownership for artificial limbs for individual patients. A major goal of neuroprosthetics37–40 is to 426 
design artificial limbs that feel and move, ideally like real limbs. Most research, however, has 427 
focused on movement control of artificial limbs37,38,41, although for a limb to be functionally useful, 428 
one must also be able to perceive somatosensory signals from the artificial limb such as touch and 429 
proprioception39,40,42,43. Recently, artificial limbs have been interfaced to the peripheral nervous 430 
system43,44 or somatosensory cortex45 in order to provide somatosensory feedback46–48. Yet, despite 431 
these achievements, many amputees continue to reject current artificial limbs because they rely on 432 
visual instead of tactile and proprioceptive signals to interact with objects49. The potential 433 
importance of inducing body ownership for prosthetic limbs was recently demonstrated by showing 434 
that upper limb amputees experience an artificial hand as part of their own body when synchronous 435 
touch was applied to an artificial hand and their (occluded) stump50. These findings were later 436 
extended using a robotic tactile interface allowing for greater stimulus control and repeated 437 
conditions51. More work is needed to experimentally test some of these issues in patients.  438 
 439 
Based on these previous and the present findings, we argue that illusory hand ownership and hand 440 
position perception using automated visuo-tactile stimulation on the prosthetic hand and the stump 441 
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or chest regions containing skin regions with referred hand sensations43,52 may contribute to the 442 
design of artificial limbs that feel like real limbs.  Automated visuo-tactile feedback as presented 443 
here and interfaced with the skin51, the peripheral53, or the central nervous system40,41 may generate 444 
ownership for a prosthesis. We speculate that the combination of visual and somatosensory 445 
feedback with ownership automation will boost tactile perception in amputees54, induce the 446 
sensation that the prosthesis is part of the amputee’s body, and may decrease the rejection rate of 447 
current artificial limbs due to the feeling that they are too heavy and alien. 448 449 
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Materials & Methods 450 
Ethics statement 451 
The studies were undertaken in accordance with the ethical standards as defined in the Declaration 452 
of Helsinki and was approved by the local ethics research committee at University of Lausanne. 453 
 454 
Participants  455 
18 healthy, right-handed participants (10 females; aged: 24 ± 5.8 years; mean±SD) were recruited 456 
for the main study. In addition, for a pilot study where we investigated illusory touch and hand 457 
ownership using the current setup, 11 healthy right-handed participants (4 females, aged: 23.5 ± 4.9 458 
years; mean±SD) were recruited. All participants reported having normal or corrected-to-normal 459 
vision and provided informed consent prior to partaking in the two studies.  460 
 461 
Visuo-tactile Stimulation  462 
The general experimental setup is shown in Fig. 1. Tactile stimulation was provided via a set of 463 
four button-style vibration motors (Precision Microdrives, London, UK) affixed in a line to the top 464 
of the participants’ right hand. The vibration motors were 12mm in diameter, with a weight of 1.7g, 465 
and vibrated at a maximum of 9000rpm. The motors were programmed to vibrate in sequence to 466 
simulate a continuous, stroke-like movement lasting 600ms (100ms per motor and a 50ms pause 467 
between motor vibrations). This type of sequence was chosen to automate the stroking patterns that 468 
are generally used to manually stroke the participants’ hand during the RHI7,8 and was based on 469 
previous work34 The direction of the stroking sequence was either to the left or to the right 470 
(randomized across participants). An inter-stroke interval of 600ms was inserted between strokes to 471 
aid in perceiving the sequence of vibrations as a single motion (Fig. 1E, top). Visual stimuli were 472 
rendered with XVR (VRMedia, Pisa, Italy) on a Fakespace Wide5 head-mounted display (HMD; 473 
Fakespace Labs, Mountain View, CA, USA). The HMD displayed a stereoscopic virtual scene with 474 
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a tabletop and four spheres on a virtual right hand (Fig. 1B), representing the four vibration motors 475 
on the real right hand (Fig. 1A). Visual “vibrations” were represented by animating the virtual 476 
motor to jitter and by changing its color from white to red. Synchronization between visual and 477 
tactile stimuli was controlled with a custom-made program where the vibration motors were 478 
controlled at a precision of approximately 0.1ms. The full experimental loop, including updates to 479 
the display had an overall precision of approximately 50ms. 480 

 481 
General Procedure 482 
Participants were seated in a fixed chair approximately 10cm in front of a table and saw a 3D 483 
virtual hand on the screen of the HMD while the skin of the participants’ real hand (resting on a 484 
table in front of them) was stimulated by a set of four small electric vibrators. We addressed the 485 
issue of whether the hand is perceived at the position of the real hand, at the position of the virtual 486 
hand, or somewhere in between (Fig. 1D). In order to create a close perspective correspondence 487 
between the real and virtual scenes, the HMD was individually fit to each subject such that the real 488 
and virtual tables were aligned. The head was restrained with a chin rest to stabilize the virtual 489 
scene and the HMD fully blocked the participants’ vision of the table, their real hand, and the rest 490 
of the room. To eliminate the possibility that participants perceived auditory cues from the 491 
vibrators, white noise was provided through a set of headphones. The participants’ right hand 492 
(palm down) was placed on the table with the tip of the middle finger at one of three pre-defined 493 
proprioceptive hand positions. A virtual hand was projected at different positions on the virtual 494 
tabletop (see below). Participants were asked to fixate on the virtual hand and to remain still while 495 
visuo-tactile stimulation was administered. 496 
 497 
Pilot Experiment 498 
To verify that our experimental setup led to the induction of illusory touch and hand ownership for 499 
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the virtual hand, we performed a pilot experiment employing a 2x2 factorial design with the factors 500 
Stroking and Posture. The pilot study was designed to closely follow well-established RHI 501 
experimental protocols8. Visuo-tactile stroking was applied for one minute either synchronously 502 
(no visuo-tactile delay) or asynchronously (visuo-tactile delay of 400ms). The virtual hand position 503 
was fixed 17cm to the left of the real hand9,13 and its orientation was either congruent or 504 
incongruent to the real hand posture8 (Fig. 2A). Immediately following the visuo-tactile stimulation, 505 
participants were given a questionnaire composed of ten questions (7-item Likert scale) to gauge 506 
the strength of the RHI in each condition (see Table 1 for the complete list of questions). The order 507 
of the experimental conditions was randomized and balanced across subjects. 508 
 509 
Main Experiment 510 
Our setup allowed us to control the position of the seen hand and administer computer-controlled, 511 
automated visuo-tactile stimulation across a large range of stroking durations as well as visuo-512 
tactile delays (from near-synchronous to many different levels of asynchronous stimulation). We 513 
tested perceived hand position following the modulation of three stimulation parameters: (1) visuo-514 
tactile delay, (2) duration of stimulation, and (3) visuo-proprioceptive separation. We adopted a 515 
continuous experimental design, in which each trial was defined by fixing a value for these three 516 
parameters. All parameters were selected randomly on a trial-by-trial basis with uniform 517 
probability. The visuo-proprioceptive separation ranged from 0 to 40cm, trial duration from 5 to 90 518 
strokes (with 1 stroke + inter-stroke interval = 1.2s), and visuo-tactile delay from 0 to 0.8s. 519 
Throughout the experiment, the proprioceptive hand position was fixed by the experimenter and 520 
changed each five trials by displacing the subjects’ right hand to one of three randomly selected 521 
positions (17, 26, or 35cm to the right of the body midline). These values were determined from 522 
pilot studies with the aim of focusing the collected data on regions where the subjects were found 523 
to be more sensitive.  524 
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 525 
Each trial involved a visuo-tactile stimulation period followed by a darkened virtual scene (1s) 526 
without the virtual table and the virtual hand. Next, the virtual scene reappeared with a virtual ruler 527 
(with centimeter precision) spanning the virtual table (Fig. 1C). Participants were instructed to 528 
verbally provide the label of the tick on the virtual ruler corresponding to the perceived position of 529 
the tip of the real right hand’s middle finger9. Response times of varied from 2s to 5s. Labels for 530 
the ticks on the virtual ruler were randomly selected on a per-trial basis to diminish biases. 531 
 532 
Of the eighteen participants recruited for this experiment, fifteen performed 62 ± 4 (mean ±SD) 533 
trials and the remaining three participants performed 163 ± 37 trials. We recorded a larger number 534 
of trials for these three participants in order to contrast our proposed model with competing models 535 
on an individual subject basis. For the group analysis, a total of 1341 trials were pooled across all 536 
eighteen participants. 537 
 538 
Response Model and Parameter Optimization 539 
Our perception model is defined by the distribution p(Q|Xv,Xp,Z), that is, the distribution of 540 
perceived hand positions Q given the multisensory input as described by Eq. (6). We additionally 541 
specify how a subject makes their decision when reporting their perceived hand position. For this, 542 
we assume that the subject draws a single sample from the distribution p(Q|Xv,Xp,Z) and reports the 543 
resulting Q-value. 544 
 545 
In general, a given subject’s decision-making strategy depends on their individual cost function55. 546 
For instance, if the cost function of the subject is based on the mean squared error (MSE), the 547 
optimal policy consists of reporting the posterior mean of the belief state. However, our results 548 
suggest that a mixture of two Gaussians provides a better explanation than a single Gaussian for the 549 
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localization errors at visuo-proprioceptive separations in the range 20-30cm (as measured by the 550 
Bayesian Information Criterion, see Significance Tests below). Alternatively, if the cost function is 551 
taken to be a Dirac-delta on the correct answer, the optimal policy is to report the maximum a 552 
posteriori (MAP).  As it has been shown that subjects may use approximations to the MAP 553 
estimate based on few samples from the posterior56, our response model can be interpreted as an 554 
approximation to the MAP strategy based on a single sample from the posterior distribution of 555 
perceived hand positions. 556 
 557 
In order to fit a perceptual MAP model to behavioral data we would have to marginalize the MAP 558 
of the posterior distribution defined in Eq. (6) with respect to the perceptual noise and then 559 
maximize the likelihood of the resulting distribution of MAP-responses to the data19. This 560 
procedure cannot be easily applied to our model due to the complicated dependency of the MAP on 561 
the single percepts Eq. (6). Rather, we adopted the following approximation: we set the percepts Xv, 562 
Xp and Z to their real values and took the participant’s response as a sample from the posterior 563 
distribution defined by Eq. (6). Consistency can be checked by performing a quadratic expansion 564 
of log-likelihood of the Gaussian mixture Eq. (6) around its closest mode given the fixed percepts. 565 
Note also that this approximation gives the same result as the correct, but intractable fitting 566 
procedure (up to quadratic order). 567 
 568 
The four free parameters {σ Z ,σ v ,σ p ,η}in Eq. (6) were fit using the following step-by-step 569 
procedure for both the group and individual data sets:  570 
  571 
(i) For visuo-proprioceptive separations larger than 30cm, we first measured the standard deviation 572 
of localization errors from the data. This defined the parameter σ p , which remained fixed 573 
throughout the rest of the fitting procedure.  574 
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 575 
(ii) For visuo-proprioceptive separations smaller than 10cm, we measured the standard deviation of 576 
localization errors from the data. This defined the standard deviation σ fused = 1/

1

σ v
2 + 1

σ p
2

under the 577 
assumption of fusion of two independent Gaussian signal channels21, represented by vision and 578 
proprioception in our setup. Since (i) provided the value of the parameter σ p , we could deduce σ v , 579 
which also remained fixed during subsequent steps.  580 
 581 
(iii) In the case that the delay parameter σ Z was irrelevant for a given fitting analysis (i.e. for Fig. 582 
3B and Fig. 6), we only considered one free parameter (η ), which accounted for the Bayesian prior 583 
in the full model described in Eq. (6). We determined a distribution p(η | Data) using a Markov 584 
Chain Monte Carlo (MCMC) procedure57, under the assumption of a flat prior p0 (η | Data)  on a 585 
finite interval (η ∈[0,4000]). We then computed 10,000 steps of MCMC resulting in 10,000 586 
“particles” for the parameter η where a specific value ηk  appears with a probability p(η | Data). 587 
This probability is itself proportional to p(Data |η,σ v,σ p ), where ‘Data’ represents the reported 588 
localization errors Q for a given Xp and Xv for the real and virtual hands, respectively, and η , σ p , 589 
σ v  defines the set of free parameters of the model described in Eq. (6). We proceeded analogously 590 
for all fits that consider visuo-tactile delay, except that we treated the two free parameters 591 
θ = {σ Z ,η} in parallel with a flat prior over σ

z
 in the interval 0 - 1s.  592 

 593 
(iv) The full model from Eq. (6) was evaluated at the data points from each range (e.g., visuo-594 
proprioceptive separations between 10cm and 20cm), by adding the contributions of the 10,000 595 
choices of θ : 596 
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p(Q | Xv, Xp ) = dθ p(Q |θ , Xv, Xp )p(θ | Data) ≈ 1

S
p(Q |θ s , Xv, Xp )

s=1

S

   (7) 597 
 598 

We analogously computed the inferred ownership (1− α ) = p(own = 1 | stimulus) as a function of 599 
visuo-proprioceptive separation, summing over 10,000 MCMC particles θ = {σ z ,η}.  Individual 600 
ownership thresholds were determined by computing the ownership curve 601 
(1− α ) = p(own = 1 | stimulus) for each of the 10,000 particles and then extracting the value of 602 
visuo-proprioceptive separation (threshold) for which the ownership curve passes through 0.5.  603 
 604 
Localization distribution peak tests 605 
In order to test whether a Gaussian Mixture Model with one or two components better explained 606 
the localization errors in the visuo-proprioceptive separation interval of 20-30cm, we fit both 607 
models and compared them using the Bayesian Information Criterion58. The BIC is defined in 608 
terms of the model’s log-likelihood p(Data |θ ) , the number of free parameters in the model d, and 609 
the amount of data seen by the model N as: BIC = −2 ln p(Data |θ ) + d ln N . Models with smaller 610 
BIC values indicate better, more parsimonious descriptions of the data. The Bayes Factor 611 
BF =p(M1 | Data) / p(M 2 | Data) between two models M1  and M 2  can be approximated with their 612 
BIC values as: BF ≈ exp

1

2
(BIC2 − BIC1)




. Finally, preference between models M1 and M2 is 613 

made by choosing M1 if BF > 1 or M2 if BF < 1. 614 
 615 
Model comparisons 616 
Model comparison between our model and a two-sense linear model20–25 was performed using the 617 
Deviation Information Criterion (DIC), defined as: 618 

−2[2 ln p(Data |θ )
p(θ |Data)

− ln p(Data | θ
p(θ |Data)

)] 619 
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where f (•)
p(•)

is the expectation of function f (x)  under density p(x)  and θ is the set of free 620 
parameters of the model58. DIC values are estimated using a MCMC procedure that produces 621 
samples from p(θ | Data)  to estimate DIC values (104 samples, using 103 burning steps and a 622 
thinning of 10 steps). Models with smaller DIC are preferred to models with larger DIC values. 623 
Note that for the model comparisons in our per-subject analyses, one subject’s DIC estimator did 624 
not converge, resulting in individual model comparisons for 17 subjects. 625 
 626 
 627 
Significance Tests 628 
Each visuo-proprioceptive separation range defined by our splitting procedure consisted of a finite 629 
number of data samples, N. We computed whether a sample of N data points drawn from the model 630 
statistically differed from the observed N experimental data points. 4000 samples were drawn from 631 
the model’s predictive distribution as defined in Eq. (7) for each visuo-proprioceptive separation 632 
range (e.g. 10-20cm, 20-30cm, etc.). These samples were then compared to the experimentally 633 
observed distribution of localization errors in the same range. Finally, we created histograms (bin 634 
size=3cm) and performed a two-sample χ 2 -test.  635 636 
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Figure Legends 878 
 879 
Figure 1: Automated experimental setup to induce hand ownership for a virtual hand.  880 
(A) The participant’s right hand is stimulated by small vibrotactile motors while they wear a head-881 
mounted display that occludes vision of their hand. (B) Subjects see a virtual hand with virtual 882 
representations of the vibrotactile motors on their real hand. (C) Following visuo-tactile stimulation, 883 
a virtual ruler was presented for participants to report perceived hand position. (D) Illustration of a 884 
case where visual, proprioceptive, and perceived hand positions differ from one another. (E) 885 
Temporal sequence of visuo-tactile stimulation on the hand for a representative trial. Vibrotactile 886 
motors “stroked” the hand with a sequence of four vibrations either in synchrony with a visual 887 
counterpart (synchronous) or with an injected delay Z (asynchronous). Individual motor colors 888 
added for graphical representation only. Note that all virtual scenes are shown in a monocular view 889 
though participants saw stereoscopic scenes. 890 
 891 
Figure 2: Experimental design and self report scores for the induction of illusory ownership.  892 
(A) Hand positions for the real hand and the virtual hand in congruent and incongruent posture 893 
conditions of the pilot study. (B) Illusory hand ownership scores (item Q3 from Table 1) and scores 894 
for a control question (item Q5). Scores from the 7-item Likert scale were normalized between -3 895 
and 3. Post-hoc Wilcoxon matched-pair tests revealed a body-selective, synchrony-dependent 896 
modulation of illusory hand ownership (p = 0.005). Importantly, this result was absent for the 897 
control conditions with incongruent visual hand postures, as well as for the control question (all p > 898 
0.05). 899 900 
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Figure 3: Empirical data show that perceived hand position depends on visuo-proprioceptive 901 
separation and visuo-tactile delay.  902 
(A) Each point represents an individual trial with a given visuo-proprioceptive separation (y-axis) 903 
and the localization error as reported by the participants (x-axis; localization error =  +/- absolute 904 
value of the ’reported hand position’ - ‘real hand position’ where positive localization errors 905 
indicate a shift of perceived hand position towards the virtual hand).  To avoid overlap of trials 906 
with identical parameter settings, a small Gaussian jitter ( μ = 0cmandσ = 0.2cm ) was added for 907 
visualization purposes. Small visuo-tactile delays (0s < Z < 0.2s) are shown in red, large visuo-908 
tactile delays (0.8s > Z > 0.6s) are in blue. Colored vertical bars (red: synchronous stroking; blue: 909 
asynchronous; shaded regions: standard error) indicate mean localization error averaged over all 910 
trials within a visuo-proprioceptive separation range of 0-10cm, 10-20cm, 20-30cm, and 30-40cm 911 
(from bottom to top). The vertical solid line at zero-localization error indicates perceived hand 912 
positions that are independent from visual cues (and thus rely exclusively on proprioceptive cues). 913 
The dashed diagonal line indicates responses based exclusively on visual cues.  (B) Histograms of 914 
the experimental distribution of localization errors for each of the four visuo-proprioceptive ranges 915 
in (A). The solid black curve overlaying the histograms indicates our model’s prediction of the 916 
distribution. Note that the broad distribution for visuo-proprioceptive separations >20cm that well 917 
captured by the model. The vertical solid line and dashed diagonal lines represent the visual and 918 
proprioceptive dominated responses, as in (A). For separations of 0 – 30cm, the model does not 919 
significantly differ from the empirical data (0-10cm: df=112, p=0.18, N=97; 10-20cm: df=180, 920 
p=0.03, N=105; 20-30cm: df=312, p=0.16, N=222; 30-40cm: df=234, p=0.1, N=100; χ 2 -test).  921 
 922 
 923 
 924 925 



 38

Figure 4: Three-sense Bayesian model of the rubber hand illusion.  926 
(A) Our generative model of perception depicted as a standard causal diagram. Variables 927 
(perceived hand position, ownership, visual hand position, etc…) are represented as circles (nodes), 928 
and conditional dependencies between variables are indicated by arrows connecting the nodes. The 929 
conditional distribution of sensory variables (proprioceptive position, visual position, visuo-tactile 930 
delay) indicated in the lower part of the diagram depends on whether the visual hand is the 931 
subject’s real hand or not (ownership node, upper right) and on the real hand position (Q node, 932 
upper left). (B) Illustration of a hand position inference (top left) and ownership probability (top 933 
right) from sensory variables Xp, Xv, and Z.  (C) Model-predicted ownership probability for the 934 
virtual hand as a function of visuo-proprioceptive separation for asynchronous (Z = 0.7s, blue) and 935 
synchronous (Z = 0.1s, red) visuo-tactile stimulation. Ownership thresholds (dashed arrows) are 936 
defined as the separation that leads to a probability of ownership of 0.5 (dashed horizontal line). 937 
(D) Ownership thresholds (mean and standard deviation) for asynchronous (Z = 0.7s, blue) and 938 
synchronous (Z = 0.1s, red) visuo-tactile stimulation for individual participants, as extracted by the 939 
model. Inset: Model predicted probability of ownership as in (C) for three individual participants. 940 
 941 
Figure 5: Comparison of our proposed model with a linear model that always fuses vision and 942 
proprioception.  943 
(A) Relative model performance between our model and a linear model (lower values indicate 944 
higher performance of our model relative to the linear model), 945 
where performance = (DICproposed − DIClinear ) /σ diff  and σ diff  is the estimated standard deviation of 946 
the difference between DIC scores (see Methods). Relative performance measures are shown for 947 
data collapsed across participants (group data) and for each individual subject. NA indicates subject 948 
data that led to ill-defined DIC scores. We found our model to outperform the linear model 949 
(negative relative performance values) in the large majority of individual subjects and at the group 950 
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level. (B) Empirical localization error measurements for an individual participant (black dots; 951 
subject 18) with the model prediction for synchronous (red curve) and asynchronous (blue curve) 952 
trials. Shaded regions indicate the predicted standard deviation of the mean. (C) Linear model 953 
predictions for synchronous and asynchronous trials on the same participant’s data. Note that 954 
without the third sensory modality (tactile), no distinction is made between predictions for 955 
synchronous and asynchronous trials. 956 
 957 
Figure 6: Single subject detailed analysis 958 
Histograms of the empirical distribution of localization errors and the associated model prediction 959 
(as in Fig. 3B) for an individual participant (subject 18). For near-synchronous stimulation and in 960 
the visuo-proprioceptive separation range of 0 – 30cm, the model did not significantly differ from 961 
the observed data.  962 
 963 
Figure 7: Effect of trial (stroking) duration on perceived hand position 964 
Long trials (>45 strokes, dark blue) vs. short trials (<40 strokes, light blue) for trials with 965 
asynchronous stroking. Each point represents an individual trial with the visuo-proprioceptive 966 
separation on the y-axis and the induced localization error as reported by the participants on the x-967 
axis (as in Fig. 3A). Colored vertical bars indicate mean localization error averaged over all trials 968 
within visuo-proprioceptive ranges 0-10cm, 10-20cm, 20-30cm, 30-40cm (from bottom to top; 969 
shaded region: standard deviation). For separations of 20-30cm, long-duration, asynchronous 970 
stroking led to significantly smaller localization error (p = 0.0032, two-tailed T-test) than for short-971 
duration stroking trials.972 
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Tables  973 
Question Synchronous

Congruent 
Asynchronous

Congruent 
Synchronous 
Incongruent 

Asynchronous
Incongruent 

Q1: It seemed as if I were feeling the vibrations in the location where I saw the virtual hand being vibrated. 2.09 ± 0.37 -0.82 ± 0.57 2.23 ± 0.29 -0.55 ± 0.57 
Q2: It seemed as though the virtual vibrations I felt were caused by the vibrations I saw on the virtual hand. 1.27 ± 0.39 -0.91 ± 0.51 0.55 ± 0.59 -0.73 ± 0.55 
Q3: I felt as if the virtual hand were my own hand. 0.82 ± 0.44 -0.82 ± 0.48 -0.27 ± 0.55 -1.18 ± 0.44 
Q4: It felt as if my (real) hand was moving/drifting towards the virtual hand’s position. -1.09 ± 0.45 -1.55 ± 0.45 -1.18 ± 0.49 -1.64 ± 0.41 
Q5: It seemed as if I might have more than one right hand or arm. -1.09 ± 0.60 -1.36 ± 0.50 -1.64 ± 0.43 -1.18 ± 0.51 
Q6: It seemed as if the vibrations I felt originated from somewhere between my own hand and the virtual hand. -0.91 ± 0.51 -0.91 ± 0.65 -1.27 ± 0.58 -0.27 ± 0.59 
Q7: It felt as if my (real) hand was becoming ‘virtual’. 0.64 ± 0.45 -0.82 ± 0.60 -0.36 ± 0.58 -0.64 ± 0.53 

Q8: It appeared (visually) as if the virtual hand was drifting towards my (real) hand. -0.55 ± 0.39 -1.82 ± 0.44 -1.45 ± 0.45 -0.55 ± 0.57 
Q9: The virtual hand began to resemble my own (real) hand in terms of shape, skin tone, freckles, or some other visual feature. -1.0 ± 0.53 -1.18 ± 0.49 -0.91 ± 0.49 -1.73 ± 0.32 
Q10: I felt as if I were fully immersed in the virtual environment. 0.27 ± 0.47 -0.64 ± 0.49 -0.09 ± 0.55 -0.36 ± 0.62 
 974 
Table 1. Questionnaire scores from the illusory ownership pilot experiment. Scores correspond to a 975 
7-item Likert scale normalized between -3 and 3. Questions were adapted from classical 976 
questionnaires gauging illusory effects during the RHI 7,18. 977 978 
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 979 
Paper Duration of visuo-

tactile stimulation (s)
Visuo-tactile delay 

(ms) 
Visuo-prorioceptive 

separation (cm) 

Present work {15.7,31.5,56.7  85.0,113.4,141.7 170.1,226.8, 283.5} [0,800] [0,35] Botvinick et al. (1998) 7 NA NA NATsakiris & Haggard (2005) 9 240 [500,1000] 17.5Moseley et al. (2008) 11 450 NA NAKammers et al. (2009)12 90 NA 15Lloyd (2007) 13 60 NA {17.5,27.5,37.5,47.5,57.5,67.5} Ehrsson et al. (2008) 50 60 NA 26Slater et al. (2008) 18 300 NA 20Rohde et al. (2011) 35 {420,[0,10,40,120]} NA 17Sanchez-Vives et al. (2010) 59 NA NA 20Tsakiris et al. (2008) 60 2.3 NA 17.5IJsselsteijn et al., (2006) 33 450 NA 30Hohwy et al. (2010) 61 {10,30,60} [500,1000] NADurgin et al. (2007) 62 120 NA 15Ehrsson et al. (2005) 63 {30,60} NA 15Morgan et al. (2011) 64 300 NA 15 Shimada et al. (2009) 65 180 [100,600] 15Dummer et al. (2009) 66 600 NA NAOcklenburg et al. (2010) 67 180 NA 17.5Schütz-Bosbach et al. (2006) 68 NA NA NAZopf et al. (2011) 69 120 NA 20Tsakiris et al. (2007) 70 125 [500,1000] 15Lopez et al. (2010) 71 60 NA 24.5  
Mean ± SD 174 ±168 650 ± 200 25 ±14
{Min, Max} {2.3,600} {100,1000} {15,67.5}

 980 
Table 2. Comprehensive summary of experimental parameter ranges used in previously reported 981 
RHI setups including the present work. Note that the range of parameters used in the present study 982 
encompasses most of the previous setups. NA indicates that the corresponding information was not 983 
provided in the article or was unclear from its methods description. The bottom row summarizes 984 
the distribution of the parametric ranges (ignoring NA values). 985 
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