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Chapter 1

Introduction

Over the past few decades parallel research in the domains of neuroimaging, neurobiology, signal
processing, machine learning, psychology, and cognitive neuroscience have led to an exciting and
promising practical nexus: the brain-computer interface (BCI). BCIs use advanced signal process-
ing and machine learning techniques combined with a contemporary neuroanatomical and temporal
understanding of brain processing in order to extract user intent from neurological data. More
specifically, BCIs form a bi-directional communication channel between humans and machines in
which users are able to relay commands in the form of brain activity patterns to software that
recognizes and translates their intent into a corresponding action. In turn, humans can recognize
the outcome of the translation of their intentions in the form of feedback and can hence modulate
future efforts. This cyclical process is referred to as a closed-loop BCI (see Figure 1.1).

Since BCIs can offer the expression of ones intentions through control that does not depend on
the normal outputs of the neuromuscular system, one of the primary motivations for BCI devel-
opment has been to aid those with severe motor disabilities. With this common goal in mind a
number of research groups have spent considerable time constructing a full-fledged BCI framework.
While working toward this common end, it has become evident that BCI research is intrinsically
multi-disciplinary and that each of the involved sub-disciplines can benefit from the collection of
methodologies brought forth in BCI research. This thesis takes inspiration from BCI research
and its methodologies by first implementing a typical BCI system and testing its effectiveness by
confirming previous results on a standard mental motor imagery task. Next, using the same BCI
framework and types of analyses, electroencephalogram (EEG) data from a novel set of cognitive
imagery tasks are explored.

The higher-level organization of this thesis is as follows. We begin by introducing the goals, basic
notions and overall context of the current work. Following the contextualization of this project, the
basics of brain-computer interfaces are described and the current work is defined by the approaches
selected in the different sub-components of the BCI taxonomy. We then move to the theoretical
background underlying the methods implemented in the two experiments that were a part of
this work. The theory of EEG signal preprocessing, feature extraction, and data classification is
outlined. After building a theoretical foundation, the two experiments are described and their
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CHAPTER 1. INTRODUCTION 4

Figure 1.1: An example of the bi-directional communication established in a closed-loop BCI. Here,
the monkey relays its intentions in the form of brain signals which are processed, interpreted, and
translated into an action by a robotic arm. The monkey can then observe the robotic arm motion
as a form of visual feedback to further aid future control. [?]

results are presented. Finally, a general and experiment-specific examination summarizes the
results and future directions of this research.

This introductory chapter seeks to contextualize this thesis in light of past, related research in
addition to motivating the need for the current work. First, the three primary goals of the project
will be explicitly defined and spelled out. Next, a detailed literature review covering related
research in the direction of each of these three primary goals will be given. This exploration will
relationally highlight the specific location of the current work while providing further evidence to
the need of such work.

1.1 Project Aim & Motivation

This project is largely motivated from prior success in motor imagery-based BCIs. Generally
speaking, the primary goal in BCIs is to improve the speed and accuracy of the communication
channel formed between ones brain and a computer. One interesting and alternative use of BCIs
involves sidestepping this original goal of previous BCI systems by merely adopting their standards
of experimental design, data evaluation, and interpretation of results. This alternative strategy
moves beyond using BCIs in their original context and considers the BCI as a general research
framework to be used to explore problems in other related domains. For instance, one can apply
these methods from the standard BCI toolkit to other types of neuroscientific research. The
advantages are bi-directional in that utilization of the BCI methodologies can help validate and
discover neuroscientific findings while simultaneously advancing BCI research by augmenting its
traditional paradigms with nonstandard techniques. Such an approach has been employed in
this thesis, whose primary goals are two-fold: first, to explore the use of novel cognitive tasks as
controls for an electroencephalogram (EEG)-based BCI and second, to apply the standard BCI
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methodologies to explore and verify observations in the domain of cognitive neuroscience. The
specific goals and steps taken to realize this work are outlined below.

Project Goals

1. Develop a BCI framework
At the core of every BCI program is an elected set of particular technologies, experimen-
tal designs, algorithms, and data analysis techniques. As mentioned above, the selection of
these widely-varied tools depends on the particular implementation and varies amongst BCI
groups. Upon consideration of the form of our laboratory’s previous experimental data as
well as the future plans to extend our toolkit to new experimental paradigms, it was decided
to develop an in-house BCI framework (see Section B).

2. Verify the BCI framework by applying a standard BCI paradigm
Prior to performing novel data analyses within a framework one must confirm that the sys-
tem works on pre-established paradigms. The most obvious way to validate a BCI system is
to perform a typical BCI experiment and to ensure that the results confirm those found in
the literature. Accordingly, a typical motor imagery-based BCI experiment (see Section 5)
was carried out and results were evaluated against previous findings.

3. Explore the use of novel cognitive tasks within an established BCI framework
Drawing on inspiration from findings in cognitive neuroscience and the standard motor im-
agery BCI paradigms, a new experimental design was created and tested (see Section 6). The
usage of new cognitive tasks in BCI control serves as a useful research direction for BCIs and
furthermore, the BCI methodology of data analysis can be used to further validate findings
and provide new insights in neuroscience.

1.2 Related Research: A Literature Review

It has been nearly 20 years since such BCI systems first successfully managed to decode specific
user intentions by exploiting certain characteristics of signals generated by a user’s initiation of
either overt (explicit) or covert (imagined) movements [39, 24]. These initial and promising results
have since inflated the BCI research community from a couple of programs to a couple dozen
programs. Several succinct topical reviews highlight the developments of BCI systems and the
current state-of-art systems [36, 37, 38]. These reviews and individual publications indicate that
though most research groups share the same end goal of improving the accuracy and speed of this
brain-based communication channel, each differs in both research orientation and in the applied
methods for their in-home BCI systems. For instance, some programs focus on benefits for the
disabled [15], others on the signal processing or machine learning algorithms useful in such a
context [18, 21], some on alternative BCI approaches [20], and a number of programs concentrate
on end-user applications of BCI [3, 7]. The interdisciplinary nature of BCIs has led many signal
processing and representation techniques, machine learning algorithms, and experimental setups
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to draw inspiration from neuroscientific knowledge. On the other hand, neuroscience has done
little to adopt the standard tools used in BCI to further strengthen the evidence of brain function.

1.2.1 BCI System Implementation

Due to inter-lab differences and the propensity to guard ones own implementation, there is a
noteworthy lack of publicly-available, non-commercial BCI systems. Some open BCI frameworks
and EEG analysis packages do exist [10, 33], but they are neither universally used nor readily
adaptable to the interests and needs of particular research groups. Moreover, one must always
balance the amount of time it would take to use and adapt a pre-existing system to tailored needs
against the time it takes to build a new system from scratch. Unfortunately the latter option often
wins, leading to further software disarray between research groups and a need to “re-invent the
wheel” with respect to certain core BCI components. On the other hand, the techniques employed
in different groups’ research is openly published and can thus be recreated [6, 15, 20, 26, 34].
While choosing a specific approach to follow one must consider the technical constraints (e.g.
choice of neuroimaging device and experimental environment), the end goal of the data analyses
(e.g. artificial prosthetic control vs. neuroscientific research), and the target population (e.g.
clinical patients or healthy subjects). After reviewing the different approaches from the most
prominent BCI groups, it was decided to start with a fresh implementation closely mirroring the
sensorimotor rhythm, EEG-based approach used by Graz University of Technology [29]. This
choice was primarily motivated by the Graz system’s many years of development, its traditional,
well-published methods and its marked success.

1.2.2 Sensorimotor rhythm-based BCIs

The selected BCI approach includes an implicit decision of the experimental design, the types of
signals, and signal features one extracts for BCI control (see Section 2.2 and Section 3.2). The Graz
BCI is one of many groups that use sensorimotor rhythms (SMR) to control their BCI [2, 5, 14].
There are several reasons that SMRs are widely used as the control signal in a BCI, the first of
which is that these signals are available at the non-invasive level of EEG. Next, SMRs have been
shown to desynchronize with imagined movement or preparation for a movement making them
useful in the context of mental imagery both for healthy subjects and those unable to perform
overt motor movements [25]. Moreover, SMRs are rather quickly learned by the subject for control
of a BCI whereas other control signals often take much more subject training [16]. Said differently,
the overall time until seeing successful results with a näıve subject is reduced. Finally, with the
advent of more advanced signal processing techniques, SMRs have been shown to be ubiquitously
present in human adults [22]. The success and evidence presented in these studies influenced
the design and construction of the base BCI system implemented in thesis as well as the first
experiment (see Appendix Band Section 5).

1.2.3 “Cognitive” Tasks in EEG and BCI research

The vast majority of SMR-based BCIs use motor imagery-based tasks, such as imagining to move
ones hand, foot, or tongue. This precedent is mainly due to the well-documented fact that imag-
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ined motor movements activate similar and overlapping supplementary motor areas as their overt
counterparts [27]. Said differently, if one imagines movement of a hand, similar and overlapping
neural ensembles become activated as if one were physically initiating hand movement. Accord-
ingly, with motor imagery one can expect certain predictable neural behavior which, in turn, can
ideally yield a cleanly localized representation of brain state activity during a given task.

It should be noted that motor imagery is technically a type of cognitive task, and the relationship
between cognitive tasks their effect on EEG is still scientifically tenuous. It is currently unknown
exactly how much one can rely on the correlation between the changes in an EEG signal and
the individual cognitive process that supposedly cause them. Moreover, factors such as attention,
memory, concentration, cognitive load, emotional state, and gender can dramatically affect the
EEG signals in cognitive task-based experiments[8]. A further difficulty is unraveled with evidence
pointing toward a correlation between particular features of unique cognitive tasks [1]. The brain
seems to perform cognitive tasks in a highly distributed, and overlapping fashion. One key finding
is the observed coherency in γ bands during performance of cognitive tasks [11]. This finding helps
pinpoint potentially important frequency features of the EEG signal while performing cognitive
tasks.

The implications of these studies provide strong motivation for further in-depth study of cognitive
tasks in EEG experiments and in particular, for use in driving a BCI. To date, however, there is a
notable lack of exploration into alternative cognitive tasks extending beyond imagination of motor
movement. Exploration of alternative cognitive tasks may bear critical neuroscientific insight and
perhaps prove to better drive BCIs as tasks can be tailored to a subject’s imaginative strengths
and weaknesses. There are, however, a couple of studies who move beyond motor imagery and
consider other more cognitively-oriented tasks in the context of BCI. One such task has BCI users
internally generating words beginning with the same letter [13]. Another compared the two tasks
of imagined spatial navigation in a familiar setting and the internalized replaying of a familiar
auditory tune against traditional motor imagery tasks [9]. Finally, a relaxation task (used as a
baseline) and an arithmetic task where the subject successively subtracts seven from three-digit
numbers have been used to control an online BCI [23].

These cognitively influenced studies are borne in same spirit as the present work, but differ in their
scope and content. The general idea behind previous work has been to explore new cognitive tasks
well-suited for distinguishing between intentional states, with the underlying intention to control
a BCI in the most simple manner possible. This common research theme can be summarized as
such:

Identifying pairs of cognitive tasks which produced distinct EEG characteristics at
the same recording site would have practical benefits. A suitable pair could then be
selected for a subject and only single channel recordings would be necessary [8].

This principle captures only half of the motivation for investigating the two novel cognitive tasks
of inner speech and own-body transformations found in the present work. The present work
additionally concerns itself with the task of verification of neuroscientific findings. That is, finding
an optimal set of cognitive tasks is not the sole goal. Additional data analyses will be performed
across 64 channels to show that the underlying cognitive processes as seen from the analysis tools
found in a BCI framework align with previous neuroscientific evidence.
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1.2.4 Neuroscientific Verification of Cognitive Phenomena

As mentioned above, one of the principal intentions of this thesis is to explore a novel set of
cognitive tasks which are selected for their neuroscientific evidence and feasibility (see Chapter 6 for
associated experiment). The two tasks explored in this work, namely that of inner speech and own-
body transformations have been localized in previous studies and could benefit from confirmation
coming from other analytical angles. Inner speech has been shown to activate left-hemispheric
regions associated to speech perception and speech motor control (i.e. the supplementary motor
area) [32]. The act of imagining ones own body in a physical space external to the observer, also
known as an own-body transformation, have shown to activate temporal-parietal junction [4].

The usage of BCIs in neuroscientific research is of strong potential merit as its methods can
complement traditional neuroscientific research methods. This hybrid tactic is investigated using
a fMRI-based BCI [35]. The authors point to the benefits of the unification of two analytical
approaches: the manipulation of a neural substrate with behavior as the dependent variable and
manipulation of behavior with the neural function as the dependent variable.

Recapitulation

This chapter developed the goals and context of the current project. More specifically, three
main goals were laid out. First, a brain-computer interface framework will be developed. Second,
a standard motor imagery-based BCI experiment will be conducted to verify the correctness of
the BCI framework. Finally, using an already-verified BCI framework, an experiment using novel
cognitive tasks will be explored in order to judge their use for BCI control and to further investigate
these cognitive phenomena from a neuroscientific perspective. After providing the three goals
for this project, a detailed literature review discussed the previous research in all of the related
domains. This previous research helps contextualize the current work while providing crucial
apriori knowledge that will be implicitly used throughout the remainder of this thesis.



Chapter 2

The Fundamentals of
Brain-Computer Interfaces

Before delving into the details of the theory behind the individual components and tools used in
the present BCI framework, it is essential to speak about BCIs at a higher, more abstract level. In
this brief chapter we will explore the different constituent subsystems that all BCIs are made of and
describe the overall flow of data in a BCI framework. Furthermore, we will categorize different
BCI systems by distinguishing amongst the typical ways the BCI subcomponents are realized.
Having established a BCI taxonomy, we can move forth in describing the current platform and
experiments in the larger context of BCIs and by using the terms introduced in this brief overview
of BCIs.

2.1 BCI Components

All brain-computer interfaces can be abstracted to reveal a set of subcomponent processes and
common tools which implement these subcomponents. A BCI framework is also an integrated,
abstract paradigm in which experimental design, certain analytical practices and technological
systems work together. Below the common subsystems found in a typical BCI are provided with
a short descriptor of their functional role. A birds-eye view in terms of the flow of information in
a BCI is provided in Figure 2.1.

• Acquisition System (Neuroimaging)
Brain data is captured using some neuroimaging modality. The type of hardware that one
uses to collect data affects the experimental design, types of control signals that can be
extracted, and often times dictates who the end users of the system are (healthy or a targeted
clinical group).

• Signal Preprocessing
Every neuroimaging modality has its technological and practical flaws. The data coming

9



CHAPTER 2. THE FUNDAMENTALS OF BRAIN-COMPUTER INTERFACES 10

from the brain is often times influenced by external noise and artifacts that must be first
cleaned before continuing with analysis. The techniques used in the signal preprocessing
stage are also dependent on the eventual type of feature classification one wishes to do, as
certain classification algorithms work better with data preprocessed in specific ways.

• Feature Extraction
Moving from a raw, preprocessed signal into a compact representation to describe the signal
is one of the most critical steps in the information flow of a BCI. The features to be extracted
from the signal depend on the acquisition system, experimental paradigm, and preprocessing
techniques. The success of the eventual classification of the signals depends on the this step.

• Feature Classification
Classification in a BCI involves the attempt to categorize the incoming feature representation
of a signal into one of the pre-established types of signals. That is to say, after training itself
on a number of examples where it can view the relationship between signal “type” (class) and
the feature representation, the classification module will predict the label of a new, previously
unseen feature representations of the signal. Classification success hinges on how separable
the examples are in each class (output) and hence on the feature extraction method.

• Application Output
After producing a best-guess for the class of what the incoming signal is, the output of the
classifier is translated into output to some external application. This application can be a
piece of software (e.g. a spelling application) or hardware (e.g. a robotic prosthesis).

• Feedback
The final stage of information flow involves feedback to the BCI user of the application
output. By observing if the system correctly translated his or her intentions, the BCI user
can learn to regulate future signals accordingly.

2.2 BCI Taxonomy

Each BCI is defined by the way in which its subcomponents are implemented. To facilitate the use
of terminology throughout this thesis, this section introduces the basic categories of BCIs while
explicitly noting where the current work fits.

• Recording Technique (Invasive / Non-invasive)
Neuroimaging techniques can be invasive or non-invasive. Common non-invasive record-
ing techniques are electroencephalograms (EEG), magnetoencephalography (MEG), blood-
oxygen level dependent response (BOLD), and near infrared spectroscopy (NIRS). Invasive
techniques involve abrasion of the scalp, skull and dura and commonly include electrocor-
ticograms (ECoG) and intercranial electrodes. The present work uses a non-invasive EEG-
based acquisition system.

• General Approach (Biofeedback / Machine Learning)
The general BCI approach refers to whether the burden of learning and adaptation lies on
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Figure 2.1: The basic information flow in a brain-computer interface as viewed from its various
high-level constituents. [BCI acquisition system picture from Guger Technologies OEG]

the subject or on the machine learning algorithm. Using sophisticated machine learning
techniques, this project follows the machine learning approach.

• Experimental Strategy (Focused Attention / Motor Imagery / Operant Con-
ditioning / Cognitive)
The experimental strategy is directly integrated with the type of control signal one wishes to
obtain (see below). Successful BCI experimental designs include experiments in which the
subject either focuses on an object, focuses on imagining the initiation of a motor task or
a cognitive task. The current work focuses uses two experimental strategies, namely motor
imagery and a set of cognitive tasks.

• Control Signal From Brain (Slow cortical potentials (SCP) / Sensorimotor
Rhythms (SMR) / Evoked Potentials / Error Potentials / Etc)
The signal features that one uses of the acquired data to control the BCI depend heavily on
the experimental strategy and on the operative mode (see below). Several control signals
have been used for control in BCIs and their details are outside of the scope of this project.
One of the most common is the sensorimotor rhythms which are ubiquitously found in human
adults and are exploited in the present work.

• Operative Mode (Synchronous / Asynchronous)
The manner in which the BCI operates is also closely tied with the experimental strategy.
Asynchronous BCIs require the computer to prompt the user with a cue signal periods where
commands can be interpreted. Synchronous BCIs are always waiting to interpret commands
and do so by first attempting to understand when a user wishes to send a command. The
BCI implemented in this thesis is asynchronous.

• Feedback (Continuous / Discrete / Modality)
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All online BCIs must give feedback to the user so that they can regulate their signals. The
present work is an offline BCI, that is, feedback is disabled. This essentially means that the
communication channel is one-directional.

• End Users (Healthy Users / Clinical Target Groups)
The end user is closely tied with the recording modality (invasive vs noninvasive) as well as
the applications. The present study wishes to look at healthy EEG users and uses the BCI
framework as a neuroscientific research tool.

Recapitulation

We have considered the BCI as a framework under which information flows in a cyclic manner.
A BCI is defined by the summation of the types of approaches used in its subcomponents. The
BCI framework implemented in the present work is explicitly defined and placed into context with
respect to other BCI systems. After reading this chapter the reader is prepared to better under-
stand the upcoming chapters as their relative importance is now put into the frame of reference
of an entire BCI framework. Furthermore, this chapter has introduced the key terminology used
throughout this paper.



Chapter 3

EEG Signal Preprocessing and
Feature Representation

The data in the present work are recorded noninvasively by measuring the surface electrical activity
of the brain via extra-cranial electroencephalography (EEG) (see Figure 3). It is worth briefly
mentioning the characteristics of an EEG signal, as most data processing algorithms are inspired
by the biophysical features of the signal. The flow of ions in and out of neuronal dendrites creates a
compensatory extracellular current captured as a potential difference (voltage) in EEG recordings.
Since this electrical activity is constantly changing and modern EEG equipment allows one to
sample at a very high rate, EEG has an excellent temporal resolution.

Despite understanding the source of the signals, one of the strongest disadvantages to using EEG as
a neuroimaging technique is that extra-cranial EEG signals portray neither the precise the origin
of the signal nor the individual neuronal activity at this source. Signals instead represent the
aggregate synchronous activity of tens of thousands of underlying neurons sharing the same radial
spatial orientation. Additionally, surface EEG electrodes sense voltages that tend to originate
from near the surface of the cortex, as voltage fields dissipate from deeper brain sources by the
time they reach the skull. In addition to the previous shortcomings, anatomical factors such as the
intervening tissue and the skull act as a signal attenuators further muddying the spatial resolution
of the oscillations. The poor spatial resolution of EEG calls for data preprocessing methods which
can spatially filter the data and enhance the resolution and increase the signal-to-noise ratio.

After applying signal preprocessing operations to the raw EEG signal, one can take one step further
by transforming the signal into an alternate representation. With the end goal being to classify the
EEG signal, the manner in which the signal is represented to the classifier is critical. The process
by which one represents the signal as a conglomeration of certain features is herein referred to
as feature extraction. Feature extraction can be performed manually by taking hints from the
underlying characteristics found in EEG signals while performing a given task. The subsequent
section on feature extraction discusses the various manual signal representations used in the present
work. Alternatively, feature extraction can be performed automatically with automated feature
selection, a process that näıvely searches for “important” features as defined by some criteria.

13
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Figure 3.1: Left: A musician dramatically demonstrates a surface EEG cap of 30-active electrodes
for use in a brain-controlled music performance. [Quintephone brainwave regen poster colour by
Quintist Chris Aimone - 2007]. Right: Six typical EEG signals for a 1 second period recorded at
256Hz.

3.1 Raw Data Cleaning and Preprocessing

EEG data is additionally susceptible to external electrical noise coming from the recording envi-
ronment and the body. The key sources of EEG artifacts are electrooculographic (EOG) signals
coming from the blinking of the eyes, electromyographic (EMG) signals coming from the flexion of
muscle tissue such as the neck, and electrocardiographic (ECG) signals from the heart. Electrical
outlets and appliances (such as lights) are the primary cause for the environmental electrical noise
found in EEG signals. It is thus imperative to first “clean” the data of artifacts via manual or
automated artifact detection. Though the description of automated artifact detection is beyond
the scope of this work, the data cleaning methods used in the present experiments can be found
in subsequent chapters (see Chapter 5and 6). Once the data is cleaned of artifacts, both temporal
and spatial EEG preprocessing operations can be performed on the raw signal.

For notational purposes we can consider the raw EEG matrix to be a two-dimensional raw EEG
matrix of M channels (i.e. electrodes) and N features (i.e. time points). Let SC be the vector
representing a single channel of length N in the raw EEG matrix. Conversely, let SF be the vector
of length M representing a single feature (time point) across all channels. It is often useful in
stimulus-locked experiments to make a clear distinction between the pre-stimulus SB

C and post-
stimulus SA

C period for each channel C.

3.1.1 Temporal Preprocessing Techniques

Temporal preprocessing methods operate across the time (feature) dimension of the raw EEG
matrix.

• Baseline normalization
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The idea behind baseline normalization is to take the average voltage for each channel during
a baseline (SB) period, and to subtract this per-channel average from each time point in the
corresponding channel. This has the effect of normalizing each channel in the raw signal to
the mean value during a controlled period. Thus, for each channel C :

SBASE
C = SC − µ(SB

C ) (3.1)

• Zero-mean normalization
A zero-mean normalization subtracts the mean of the signal across all time points for each
channel from each corresponding channel and then divides the result by the standard devia-
tion across the time points. This has the effect of changing each feature in the signal to have
a mean of 0 and unit representing the number of standard deviations away from the mean.
That is, for each channel C:

SZERO
C =

SC − µ(SC)
σ(SC)

(3.2)

• Unit variance normalization
This normalization scheme rescales each feature for each channel to unit variance by dividing
each feature by the square root of the variance across all features. This type of normalization
is useful if the data is eventually submitted to a neural network classification, but can be
deleterious for other learning algorithms. Mathematically speaking, for each channel C one
computes:

SUNITV AR
C =

SC√
σ(SC)

(3.3)

3.1.2 Spatial Preprocessing Techniques

Since the channels (electrodes) have a particular spatial relationship with one another on the scalp,
spatial preprocessing involves operations performing operations across the channel dimension of
the raw EEG matrix. The following four methods are the most common spatial preprocessing
techniques have been compared in the context of BCI use [19]. It should also be noted that the
method of Common Spatial Patterns (CSP) is often used but left out of the present discussion
[12]. A graphical illustration of the involved electrodes for each of these spatial filters can be seen
in Figure 3.1.2.

• Ear reference
The most traditional way to remove noise from electrodes is to attach an electrode to some
neutral electrical ground (such as the ear) and refer all other channels to this neutral sig-
nal. The main principle is that if there is environmental or body-generated electrical noise
captured at the ears, this noise will reach the EEG electrodes. Subtracting each channel by
this reference would then ideally remove the environmental noise. Let SREF

F be the reference
signal for feature F. The ear reference is computed for each feature F as follows:

SEAR
F = SF − SREF

F (3.4)
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Figure 3.2: The involved electrodes in four different spatial filters. The red electrode represents
the electrode at which the filter is applied and the set of green electrodes are used as references
according to the methods described in Section 3.1.2 [19].

• Common Average Reference (CAR)
The CAR functions according to a similar principle as ear referencing. In order to subtract
common environmental noise, the mean value for a given feature across all channels in the
montage computed and subtracted from the feature values of each channel. More formally,
for each feature F we compute:

SCAR
F = SF − 1/C

C∑
j=1

Sj
F (3.5)

• Small/Large Laplacian
As mentioned above, electrical signals captured by EEG flow radially from their source.
The principle behind a surface Laplacian filter is that it would be ideal to capture the elec-
trical activity directly beneath a given electrode and to filter out activity under adjacent
electrodes. Computation of the standard surface Laplacian is expensive as it involves in-
terpolation of splines and a second-order spatial derivative computation at each electrode.
In the present work a spatial Laplacian filter is instead approximated by the discrete finite-
difference method, an often-used approximation that involves simply computes and subtracts
the mean of a defined neighborhood of electrodes from each electrode of interest. The neigh-
borhood function for each electrode can be defined in any arbitrary way, though this work
follows the literature by defining a Small Laplacian as the four nearest-surrounding neigh-
bors (about 3cm from the electrode in question). The Large Laplacian requires the same
computations only differing in neighborhood definition: the next-nearest neighbors (about
6cm from the electrode in question). Note that the neighbors of each electrode are unique.
Taking a neighborhood of four electrodes for each channel DC and individual neighbors j ,
a Laplacian filter is applied as:

SLAP
C = SC − 1/4

4∑
j∈DC

Sj
C (3.6)
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3.2 Feature Extraction

With the overall goal of classifying EEG data in mind, we wish to construct a representation
of the EEG signal that maximizes the discriminability of each type of task in the experimental
design. Ideally this means molding the set of clean, preprocessed, raw EEG signals into some
unique representation with respect to a certain elicited brain state. Though EEG is recorded
continuously during an experiment, there exist short periods of interest known as a trial during
which the experimenter asserts that the subject is in a particular brain state. Trials are generally
a collection of short EEG signals that, in the current work, are one second in length (see Chapters
5and6). It is worth noting the amount of flexibility built into a representational system; these
trials can be represented in any arbitrary fashion. For instance, the timeseries information can
instead be seen as the combination of a number of sub-features computed by one or many methods
with different parameters such as particular EEG electrodes or selected frequency bands.

In general, BCI has seen greater success with signals represented in the frequency domain, as
many tasks have been shown to have distinctively associated spectral features. All of the feature
extraction methods presented below are based on first transforming the EEG signals from the time
domain to the frequency domain. Since frequency domain analysis and its applications is a large
field, only those techniques particularly pertinent to the present work are discussed below.

• Spectrograms and Spectral Power Estimation
One first simple alternative signal representation is to transform the timeseries data for a
trial into the frequency domain via a short-term Fourier transform (STFT) across various
frequency bands using a sliding window and then computing the power spectral density (PSD)
under the sliding window. The result is referred to a spectrogram, where one information
for the intensity (power) for each frequency in the signal across time. The spectrogram is
computed as the absolute magnitude of the result of the STFT:

spectrogram(t, ω) = |STFT (t, ω)|2 (3.7)

There are several major disadvantages to performing a discrete frequency domain transfor-
mation using a STFT within the context of BCIs who are generally characterized by short
trials. First, the STFT generates certain edge effects as the first result comes from the mid-
dle of the first sliding window, thus intensity data for frequencies beginning in time periods
before the middle of the first sliding window are lost. If the intensities of importance lie
within the beginning of the signal, this is unacceptable. One potential workaround is to take
extra data around the trial. However, since trials tend to begin directly following stimulus
presentation, one would be computing the spectrogram for a mix of pre and post-stimulus
signals, which is often undesirable. Second, to avoid aliasing problems and to capture higher
frequencies, the window size of the sliding window in the STFT must be sufficiently long.
This requirement is difficult to meet as EEG trials can be short. Finally, the computation
of the power in a series of sliding windows can be computationally expensive. This addi-
tional computation is often unacceptable for real-time BCI systems. For these reasons,

BCI systems often estimate the spectral power in trials via power density estimation. One
estimation scheme is the maximum entropy (all-poles) method that uses an auto-regressive
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Figure 3.3: Top: Band power as a function of time for three frequency ranges (10-12Hz, 14-18Hz,
and 36-40Hz) displaying an electrode (C3) contralateral to right finger movement. Note that the
µ ERD peaks around stimulus onset of t=0.
Bottom: ERD can be clearly seen in the muting of the signals Fz, C3, C4 and Cz on and around the
initiation of motor imagery. Moreover, the post-movement β synchronization following imagined
motor movement is clear in parietal electrodes.

model (AR) to compute coefficients of the spectral power [31]. The advantage to spectral es-
timation is that an estimate can be provided even for short sequences with no data loss as in
the sliding window STFT. On the other hand, the underlying auto-regressive model requires
finding a proper value for the model order hyperparameter in order to provide a more pre-
cise estimate. This hyperparameter is eventually selected automatically in the Singletrial
Matlab Toolbox (see Section 4.1).

• Event-related Synchronization/Desynchronization (ERS/ERD)
Sensorimotor rhythms manifest themselves over somatosensory cortices and generally consist
of an α-rhythm centered around 8-12Hz (referred to as the µ-rhythm), a secondary β-rhythm
component around 16-20Hz, and a γ-component around 36-40Hz. When preparing or per-
forming a motor movement, an increasing number of neural populations synchronize causing
the slowing of oscillations in particular neural ensembles. This phenomenon is referred to
as an event-related desynchronization (ERD) and is most noticeable in the µ-rhythms 3.2.
ERDs can be exploited as a feature representation for BCI use by first computing the PSD
for pre-and post-stimulus data. Then, one defines a pre-stimulus baseline period and com-
putes the percent change in the PSD across the stimulus. More formally, consider that one
already has the power for a pre-stimulus reference (baseline) period PRand the power for the
after-stimulus period PA. The percent in ERD change is then computed as:

ERD% = 100
(
PA − PR

PR

)
(3.8)
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• Event-related Spectral Perturbation (ERSP)
The downside to ERD analysis is that it only captures very narrow selective frequency
bands. The event-related spectral perturbation (ERSP) generalizes this by showing the mean
frequency-by-latency across an experimental event. ERSPs are commonly used as an EEG
data analysis tool to observe how strongly event-related power increases or decreases with
respect to a baseline power. It can be computed in a straightforward manner from the
timeseries by taking the mean of the power during a reference period PR and the mean
power during the after-stimulus period PA. Then, these mean PSDs are converted into the
decibel domain (below noted as the db() operator) to regularize the eventual logarithmic
computation:

ERSP = log

(
db(µPA

)
db(µPR

)

)
(3.9)

• Other BCI Features
The above-discussed features are all possible feature representations based on the experimen-
tal paradigm used in this project. Namely, having both well-defined stimuli (from which pre
and post-stimulus periods can be defined), and motor-imagery based task make these feature
representations natural candidates. For clarity, it should be mentioned that BCI groups con-
trol their BCIs and select their experimental design according to a number of other paradigms
such as slow cortical potentials (SCP), readiness potentials (Bereitschaftspotential), steady-
state visual evoked potentials (SSVEP), and the so-called P300 “abnormal-event” signal. The
explanation of these signal features is outside of the scope of the present work but can be
found in any basic review of BCIs.

3.3 Automated Feature Selection

Feature extraction as described above requires one to embed outside knowledge of the underlying
neurophysiological characteristics (e.g. for deciding particular EEG electrodes) or task-related sig-
nal characteristics (e.g. for selection of frequency bands or deciding to use ERD). An alternative
approach is to assume nothing about the signal and to näıve way to select especially distinctive
features. Automated feature selection is used to this end and in the context of BCIs is used on
two types of features: EEG electrode selection and frequency band selection. Using automated
algorithms that highlight those channels and important frequencies in classifying the data is ben-
eficial in two key ways. First, it provides one with a way to reduce the dimensionality of the data
by electing to classify the data only on the most important features. Second, one can verify that
the selected electrodes spatially correspond with the expected neurophysiological areas for a given
task and that the important frequencies align with prior frequency-domain EEG research. This
second advantage is a way in which neuroscientific research can be doubly verified using a common
BCI tool.

• R2 Feature Selection
Feature selection can be seen as the task of giving each feature a score based on a scoring
metric and then to select features whose scores are highest. One such statistical, correlative
scoring metric is the R2 criterion, whose value represents the proportion of variance of the
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EEG voltages that is accounted for by each task (e.g. left-hand or right-hand motor imagery).
The R2 value is a useful metric for feature selection as it reflects the signal-to-noise ratio.
The present work, however, favors more sophisticated feature selection techniques described
below.

• Distinction Sensitive Learning Vector Quantization (DSLVQ)
This feature selection method has been used to select both optimal channel and frequency
bands in a set of motor imagery-based BCI experiments [30]. In short, DSLVQ operates by
using a modified version of the LVQ algorithm in which a weight vector assigns a value to
each dimension while the learning of the network takes place. Those dimensions aiding in the
correct classification of new samples are assigned higher weights whereas those contributing
to misclassification are penalized with a lower weight. After learning takes place one has a
weight vector for each input dimension (feature) and can use these to grade how important
each feature was in the discrimination of two tasks. Though The Singletrial Matlab
Toolbox contains tools to compute and view features selected by DSLVQ, this type of
analysis is not used in the experimental results of this thesis.

• Joint Classification & Feature Selection Methods
There are a number of algorithms which have been shown to do joint EEG classification
and automated feature selection [21]. While classifying EEG data these techniques maintain
a high-dimensional weight vector representing a decision hyperplane in multidimensional
space. The weights in this weight vector are directly correlated with the importance of their
corresponding dimension, as in DSLVQ. That is, by taking the absolute value of the feature’s
respective weight in this weight vector, one can obtain a direct measure of the importance
of that feature. This can again be done for both electrode selection and frequency band
selection (see Section 4.3 for the theory and Chapter 5for experimental results showing how
these can be used). This is the method of automated feature selection used in the current
work for all experimental analyses.

Recapitulation

This chapter provides a concise summary of the ways of manipulating raw EEG signals in order to
prep them for classification algorithms. We began by going through the raw preprocessing tech-
niques which involve processing the EEG data over the time dimension or the spatial dimension
(across the channels). We next described how to extract sensorimotor and frequency features out
of the timeseries data in order to more precisely represent a period of EEG data for classification.
Finally, we contrasted the differences between feature extraction and automated feature selection
by providing a number of methods which are used to find channel and frequency features auto-
matically out of EEG data. The theory presented in this chapter forms a backbone for all of the
data analysis techniques used in the two conducted experiments.



Chapter 4

EEG Data Classification

One of the primary aims of a BCI is to translate the EEG signals and assign them to a state; in
other words, to classify the EEG data. This amounts to finding underlying patterns within the
brain activity as represented by a preprocessed, feature-extracted representation of the original
electrical signals. This chapter is dedicated to the process of data classification and represents the
subcomponent of the BCI that is a pattern classification machine. We begin by briefly describing
the staple methods used in data classification in the BCI context and catalog the fundamental
operations taking place when classifying data during the two experiments found in this work.
After conveying the basic principles, the theory is lain for the two classification methods analyzed
and compared throughout the rest of this thesis. This chapter is not a primer on machine learning
and pattern classification, as these wide-ranging topics exceed the boundaries of the present work.
Furthermore, only a fraction of the subdomain of BCI machine learning is touched as only those
techniques used in the present work are discussed (see implementation information in Appendix
B). Comprehensive reviews exist which cover the ideas from this chapter in much greater depth
and breadth [17, 21].

4.1 The General Principle and Methods

We consider the problem of two-class, supervised classification in BCIs. More specifically, every
data point has an associated label out of a set of two labels. In the greater context of the BCI pro-
cess, a data sample will at this point be a feature-extracted representation of the raw, preprocessed
EEG signals coming from a time period where the state of the brain (i.e. the label) was controlled.
At the classification level the data has been abstracted from its source; as far as the classifier is
concerned, the data can represent anything – it is just a point in a high-dimensional space. The
task of the classifier is to build a model by training itself on training examples. By observing the
label of a new training example, the classifier assimilates into its model the fact that data of this
label can “look” like the new training example. With more and more training examples the model
becomes intricate and progressively more robust. The model begins to capture the underlying
patterns in like-labeled data (a class) and finds a way to separate data from this class from those

21
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belonging to another class. Each particular classifier has a unique criterion by which it chooses
how to make its class-assigning and model-updating actions based on the presentation of a new
sample.

Once the model is trained on a set of training examples, the classifier is ready to be put to the
test. To test for classification performance a new data point is given to the classifier who, without
looking at its associated class label, determines a class label for the sample given its internal
model and its decision criterion. This proposed label is then compared against the true label.
Classification performance is then gaged as the number of correct assignments out of the total
number of assignments the classifier makes.

There are a number of practices which are critical while doing machine learning to avoid“cheating”.
The first common practice is to randomly sample the data which is fed to a classifier. If the classifier
were to always see the same data, it could learn to perfectly classify without properly learning
the underlying patterns. A similar problem happens if a classifier’s model is trained with too
few data. This problem is referred to as overfitting as the classifier learns to perfectly classify
the training data but cannot generalize well to new, unknown data. Other than having enough
data and randomly sampling, one should designate and set aside a training and a test set. While
training the model for a classifier, the classifier may never assimilate data into its model from the
test set – these are forbidden for training. There are a number of other simple mistakes that one
can make to “cheat” in machine learning but listing all of these is out of the scope of this thesis.

Particular Concepts

It is particularly instructive to define a few brief classification algorithm concepts in order to later
define the classification algorithms used in this thesis.

• Generative vs. Discriminative
The classification approach can be either to learn how to discriminate the class membership
for direct classification of a new feature vector (discriminative), or to learn how to compute
the likelihood that a new feature vector belongs to each class (generative). Both the linear
fisher discriminant (LFD) and sparse linear programming machine (SLPM) are discriminative
classifiers. This means that these two learning algorithms use training samples to build
a multidimensional, separating hyperplane which, when given a new feature vector, class
membership can be immediately computed.

• Sparse classifiers
Most discriminative classifiers use a high-dimensional vector known as the weight vector to
describe the separation between classes. Sparse classifiers are variants upon general clas-
sification algorithms which favor sparse weight vectors, namely they return weight vectors
where most entries are zero. This can be useful in determining the important directions
(dimensions) for classification and for automated feature selection, in the case of BCIs.

• Cross-validation and Nested Cross Validation
The ideas presented above about using a separated training and test set provides a classi-
fication performance for a given random split of the data. Since this random split could,
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by chance, be “lucky” or “unlucky” in the sense that the data used for training the classifier
may be unrepresentative of the population of the data as a whole. To help further generalize
classification results a technique known as cross validation is used. Cross validation comes in
a number of flavors, all using the same principle that the data is to be resampled a number
of times and the average classification performance across these different samplings should
be instead used. This creates a more generalized estimate of the classification performance
on unseen data.

Three common variants of cross validation exist and are used in the current work. The
first is k-fold cross validation. The idea is that one divides the data into k clusters. Training
of the classifier is performed for data from k-1 of the clusters and the final cluster is used for
testing. This process represents a single fold. Then, the cluster which was used as testing for
the first fold becomes part of the training set for the second fold and in its place a different
cluster from the k-1 clusters becomes the test data. Each fold thus builds a model on k-1 data
clusters and tests the model on one data cluster. This is repeated k times and the average
is taken to be the generalized classification performance. A similar, more extreme version of
k-fold cross validation is leave-one-out (LOO) cross validation. LOO splits the entire data
set into one cluster per data point. At this extreme a model is trained for all data except
for one point. Then the classifier is tested on this one data point. The data point left out
for testing rotates such that all data points are at some point both a part of the training set
and are the test point. The average over the number of classifications performed gives the
generalized classification error.

One final variant of cross validation is the so-called nested cross validation. Nested cross
validation is used when there are hyperparameters that must be estimated for the data set.
It is unfair to learn hyperparameters based on all data and then to split the data into a train-
ing and test set. Instead, the idea behind nested cross validation is that you embed a cross
validation for model selection inside of the outer cross validation scheme. More specifically,
the inner cross validation performs cross validation on just the training set for the outer cross
validation. Finding the best parameters given the outcome of the inner cross validation on
the training set allows one to set the parameters at the outer level and compute the classifi-
cation performance. This is a “fair practice” algorithm that is often times overlooked when
performing parameter estimation in cross validation schemes.

4.2 Linear Fisher Discriminant

The linear fisher discriminant (LFD) is the first of the two classifiers used in this work. The idea
behind it is to maximize the difference between the means of the two classes while simultaneously
minimizing the variance within each class. Let s21be the variance for class one and s22 be the
variance for class two. Moreover, we define µ1 as the average for class one and µ2 as the average
for class two. The linear fisher discriminant seeks to find the maximum value of the Fisher criterion
for all linear projections of w where the Fisher criterion is defined as:

J(w) =
|µ1 − µ2|2

s21 + s22
(4.1)
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The result is a linear projection w who defines a hyperplane in multi-dimensional space dividing
the two classes. To obtain a class label one simply projects the data onto the hyperplane and takes
the sign()of the output as the class label.

4.3 Sparse Linear Programming Machine (SLPM)

The Sparse Linear Programming machine is a sparse variant of a Support Vector Machine (SVM).
SVMs operate on the principle that a high-dimensional hyperplane can exist that perfectly separate
the data. The goal of a SVM then is to maximize the margin, i.e. the distance from the separating
hyperplane to the nearest point in each class. The precise theory of SVMs is outside of the scope
of this work and can be found in any pattern classification textbook. It suffices for our purposes
to say that SVMs can be formed as a mathematical optimization problem where one is looking for
a projection w such that:

min
1
2
||w||2 s.t. yi(wTxi + b) ≥ 1

Where yi is the class label of [-1, 1] for sample xi and b is a bias (or a simple offset for the
hyperplane). The Sparse variant of the SVM simply uses the 1-Norm instead of the 2-Norm in this
mathematical optimization. By switching to a 1-Norm the SLPM favors sparsely populated weight
vectors. SLPM is implemented by using a mathematical programming approach, i.e. setting up a
large system of equations and solving for the optimized variable values. More details about SLPM
and its relationship to SVMs can be found in [21].

Recapitulation

This chapter has briefly covered the basics needed to understand machine learning in the context
of BCIs. The basic data representation as well as the goals of data classification in BCI have been
lain out. Furthermore, the theoretical background for the basic tools used throughout the analysis
of the experiments have been presented. Finally, a quick introduction to the theory behind the two
classifiers compared in the results was provided. Understanding the place of data classification in
a BCI will help one understand and interpret what the results of the experiments represent.



Chapter 5

Experiment 1: Motor Imagery

In order to achieve the goals set forth for the current work, we begin with an experiment that
directly follows a well-established line of research using motor imagery in BCIs. More specifically,
the protocol used in the Graz BCI is recycled with particular dedication toward reproducing similar
results in the Singletrial Matlab Toolbox as are found in the literature [28]. By closely
following a standard BCI protocol and using the Singletrial Matlab Toolbox to decompose
and analyze the data, we are able to simultaneously achieve the first two goals of the present work
(see Section 1.1).

The chapter is organized by linearly running through the various stages of experiment. We begin
by describing the manner in which the experiment was performed, namely how many subjects
participated, the neuroimaging hardware used, the experimental environment, and experimental
design. Next, we provide an in-depth look at the EEG data by describing the shape and prepro-
cessing of the captured data. The different methods and techniques used to extract features out
of the preprocessed data are then chronicled, followed by a description of the data classification
methodologies. Finally, the experimental data are analyzed and detailed results are provided.
Throughout the results section data analysis and qualification is performed but further discussion
of the details and implications of the results is left for Section 7.2.

5.1 Methods

Subjects
A motor imagery-based EEG experiment with nine healthy, adult subjects (seven males, two
females) was performed. None of the subjects (with the exception of one) had previously partici-
pated in a BCI experiment. Each subject participated in one EEG session lasting between 25-40
minutes, with interjected breaks every 5-7 minutes. All subjects were volunteers and provided
written, informed consent. Data for eight subjects is included in the following analyses, excluding
one subject (subject 3) whose recordings were discarded due to noise and lack of experimental
attention.

25
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Figure 5.1: The electrode placement for 32 channels of the 256-channel Biosemi cap used for eight
of nine subjects in the motor imagery study. The subset of electrodes used are highlighted in blue.

Data Collection
Data was captured using 32 active Ag/AgCl electrodes and a Biosemi ActiveTwo AD amplifier
and converter. Electrodes were placed atop a layer of electroconductive gel according to the
closest-fit of the 32-channel, 10/20 Biosemi cap inlayed on the 256-channel, ABC layout Biosemi
cap. For eight subjects these 32 of 256 channels were used for recordings and for one subject the
closest-fit of 32 of the 192-channel, 10/20 Biosemi cap were used (see Figure 5.1). To interpolate
electrooculargrams (EOG) for later artifact detection, four flat electrodes were placed on the face:
two above and below the left eye, one to the left of left eye, and one to the right of the right
eye. Impedance in all electrodes was verified to be at an acceptably low level before beginning the
experiment. EEG data for 32 scalp and 4 EOG electrodes were digitized at 256Hz and stored for
later analysis.

Experimental Design
Subjects were seated one meter in front of a stimulus monitor in a dark, electric-shielded, sound-
proof room. Each subject was led through a series of practice trials and demonstrated the time
periods when they were able to relax and were otherwise asked to sit as still as possible and to
avoid blinking of the eyes. Following the standard Graz BCI paradigm, the goal was to discrimi-
nate between two mental tasks. Upon presentation of one of two visual cue stimuli, subjects were
asked to mentally envision left-hand or right-hand movement while avoiding physical initiation of
the movement. A block consisted of forty trials, each trial lasting eight seconds on average and
subjects performed between 160-240 (half left-hand, half right-hand) trials in a session.

A single trial began with a two-second period where subjects were asked to relax and fixate on a
point in the middle of the screen. Following this, a green circle overlays the fixation point as a
one-second warning of the upcoming stimulus. The stimulus is then presented inside of the green
circle as a randomly-decided left or right arrow for one second. Following this is a three second
rest period and then a randomized inter-trial interval lasting 0.5-1.5 seconds. See Figure 5.2 for a
graphical representation of the experimental design of a single trial and the accompanying visual
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Figure 5.2: A single trial of the motor imagery study with accompanying visual stimuli. Subjects
are asked to relax, take note of the stimulus warning, and then perform the mental task of imagining
left-hand or right-hand movement according to the direction of the arrow. Afterward, the subject
is given a few seconds of rest and another trial begins.

stimuli.

5.2 Data Preprocessing

The selection of preprocessing techniques has great effect on the eventual classification results and
highlights the trade-off between not having enough data to classify high-dimensional data and the
danger of overfitting. Because of the experimental setup and ample relaxation periods, it was
elected to keep all trials for all subjects in the analysis. This differs dramatically from previous
approaches as they perform manual selection of artifact-free trials often leading to trial rejection
rates as high as 60%. Though these trial rejections can help eventual classification results, it was
determined that keeping all data is better suited for the eventual move to an online BCI using
robust classification algorithms. This idea is the general BCI approach popularized by the Berlin
BCI group with the slogan “let the machines do the learning”.

For a few subjects data was captured at 1028Hz and was hence downsampled to 256Hz for con-
sistency amongst subjects. Though all trials were kept in the data analyses, any significantly
noisy channels were discarded. On average, less than one channel was discarded per subject. The
data was first spliced into a series of labeled trials by using timestamps sent by the synchronized
experimental presentation software EPrime. The period of interest for each trial spanned from
2500 ms before the stimulus presentation until 1250 ms after stimulus presentation. A baseline
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period of one second was defined ranging from -2500 ms to -1500 ms (with respect to stimulus
onset) and the task period of one second defined between 250 ms and 1250ms. The baseline was
selected to be one second lying in the middle of the relaxation period, prior to the green circle
stimulus warning. The task period was offset 250 ms from stimulus onset to avoid capturing the
visual-evoked potentials from the presentation of a visual stimulus.

The split, raw data was first temporally preprocessed by baseline normalization (see Section 3.1.1)
and then spatially preprocessed in one of two ways, depending on the eventual destination of the
data:

1. Manual Channel Reduction and Interpolation
The Graz BCI uses only two EEG channels recorded over sensorimotor cortex (one over the
left hemisphere, one over the right hemisphere) and a third EEG channel over central parietal
lobe. From these three channels they spatially interpolate values at the two sensorimotor
channels using a dipole method. The net effect is that features are eventually computed
only for two channels. Since this work aimed to first replicate results found in the previous
literature, the 32-channel recordings had to be manipulated into two channels. To do so,
first a CAR spatial filter was applied to all channels (see Section 3.1.2). Following this, a
small, reduction Laplacian spatial filter was applied. This filter is a combination of manual
selection of the two channels over sensorimotor cortex lying directly over “hand areas” (C3
and C4) and a simultaneous local, small Laplacian. More specifically, the average value of
the four nearest neighbors around each of these two channels is taken and subtracted from
the corresponding channel. The result is a reduction of 32 channels to two, interpolated
channels.

2. Feature Selection: Channel and Frequency Approach
For those data destined to feature selection algorithms there are two perspectives from which
to view feature selection: the channel perspective or the frequency perspective. The differ-
ence lies in whether one wishes to eventually have a feature vector composed of elements
which represent channels or frequencies. When performing channel selection, the spatial pre-
processing was done by keeping all channels and applying a spatial CAR filter to all channels
for all trials. When performing frequency selection, a spatial CAR filter is applied to all
channels and then the data is reduced to a single, hand-picked channel which, after feature
extraction, is represented by various frequency components.

5.3 Feature Extraction and Data Classification

Each trial is represented by two seconds of preprocessed EEG data where the first half represents
baseline activity and the latter half represents task-based activity. Feature extraction was executed
in one of three ways, again depending on the type of final analysis to be done. The feature
extraction process is graphically depicted in Figure 5.3 for several of the three tactics.

1. Graz BCI Features
Following the Graz BCI protocol, the two seconds of data for each trial was split into eight
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Sub 1 Sub 2 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9
Low Band (µ) 9-13 8-12 9-13 8-12 9-13 8-11 8-11 8-12

Middle Band (β) 20-25 19-25 19-24 18-26 19-26 18-26 18-26 18-25

Table 5.1: The two hand-picked frequency bands (in Hz) for each subject used in computation of
the Graz BCI features for classification of left-hand vs. right-hand motor imagery.

windows of 250ms. Then, using Maximum Entropy Method spectral estimation (see Sec-
tion 3.2), an estimation was made of the spectral power in each 250ms chunk across two
subject-dependent frequency bands. It is has been well documented that inter-subject dif-
ferences exist in terms of important frequencies for classification [28]. Subject-dependent
frequency bands were selected by hand based on observation of their respective effectiveness.
Each subject’s two frequency bands were chosen from µ and β rhythms and were centered
roughly around 8-13Hz and 16-24Hz. Table 5.1 provides the subject-dependent frequency
bands. A spectral estimation was made every 1Hz across each of the two frequency bands and
the average spectral estimation across each band was taken. For example, the spectral esti-
mation for 8-13Hz is the mean spectral estimation for the estimations at 8Hz, 9Hz, 10Hz, etc.

Next, the ERD was computed for each 250ms across two frequency bands. This is a paired
operation in which the estimation for each band from the first 250ms of the baseline period
is subtracted and normalized from the first 250ms of task-related data according to the ERD
computation found in Section 3.2. Then, the ERD for each band from the second 250ms
period is computed and so forth. After feature extraction a trial is represented by four ERD
values for each of two channels and each of the two frequency bands.

2. Joint Feature Selection and Classification: The All-Channel Approach
Since we wish to perform feature selection across the channels, it is necessary that the feature
vector contain information for each channel. To achieve this, we begin with the same process
as used in the Graz BCI features. Namely, four ERD values for each trial and for each
channel across a single frequency band are computed as above. The frequency band can be
arbitrarily defined and in the following analyses is a narrow band of 1Hz. The average of
these four ERD values is taken as the feature for each channel. Thus, after feature extraction
each trial is represented by one ERD value for each of the 32 channels.

Regardless of the manner in which features are extracted from the signal, the representation must
be standardized for the classification algorithms. This is performed in a linear unfolding of feature
matrices into a single feature vector. For example, the Graz BCI representation results in a 2
channel x 4 ERD-values x 2 frequency band feature matrix which is flattened into a single 16x1
feature vector. The data are now packaged in a generalized matrix ready for classification, namely
each trial is represented a single feature vector. Class labels (i.e. left or right) are assembled for
each of the trials.

A 10-fold cross validation classification scheme was performed with classification by two types
of classifiers: a Linear Fisher Discriminant (LFD) and a Sparse Linear Programming Machine
(SLPM) (as described in Chapter 4). Nested cross validation was also implemented to be used in
this context but results are not given (see Section 7.4). It was necessary to manually select values
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Figure 5.3: Left (A). Graz BCI-like features extracted from preprocessed EEG signals. First, each
trial is broken into eight windows of 250ms for the two channels. Spectral estimations are then
made across two frequency bands. Finally, ERD is computed by matching the estimates from first
250ms period of task-related data to the first 250ms period of the baseline period, the second to
the second, etc. This leaves one ERD per 250ms for two channels and two frequency bands. Right
(B). Features extracted for eventual automated channel feature selection. Each trial is broken into
eight windows of 250ms for all 32 channels. Spectral power estimations are made for each 250ms
and the average is taken for the baseline period and the task-related period. Finally, a single ERD
value is computed using the averaged spectral powers leaving one ERD per channel.
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Sub 1 Sub 2 Sub 4* Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Subject Average
LFD 52 69 63 54 54 64 61 57 59

SLPM 53 68 63 52 52 62 59 57 58

Table 5.2: Classification performance (in %) for two classifiers (LFD and SLPM) using the Graz
BCI feature vectors. The best per-subject performance is in bold. It is worth noting that there is
little difference in classification performance between classifiers with this low dimensional feature
vector.(*) Subject 4’s results were consistently inversing classification decisions (see Section 7.2).

for both the model order hyperparameter in MEM estimation and the regularization (sparsity)
hyperparameter used in the SLPM. The selected parameter values are listed in Appendix A.2 in
Table A.1.

5.4 Results

Analysis was performed for the three different feature representations across two dimensions: clas-
sification performance and automated feature selection. In this section the results are accompanied
by minimal analysis and observations. See Section 7.2 for further, in-depth discussion of the results.

5.4.1 Classification Results

The overall goal for the classifier is to correctly classify a new, unseen trial as being either right-hand
or left-hand motor imagery. Since discrimination is amongst two classes, a classifier performance
of 50% indicates no significant distinguishability exists between the chosen representation of the
two mental tasks and 100% indicates perfect distinguishability. Classification performance was
computed using a cross validation scheme for two types of classifiers a LFD and a SLPM for the
following two feature representations.

1. Graz BCI Features
Table 5.2 displays the results obtained by classification using the Graz BCI feature repre-
sentation. It is clear from the beginning of our analysis that certain subjects stick out as
having better performance, namely subjects 2, 7, and 8. Furthermore, note that there is
very little difference in performance between the two classifiers with this low-dimensional
feature vector representation. Knowing that classification is working well already for certain
subjects, we move on to more sophisticated techniques and analyse the data using different
feature vector representations.

2. All-Channel Approach: All Channels, Individual Frequencies
Using a feature vector representing one ERD value per channel, several analyses were made.
First, raw classification performance for the two classifiers across the same two subject-
dependent low/high frequency bands as above were computed (Table 5.3). These data show
us what direct effects the feature representation can have. More specifically, these results
exhibit the effect of classifying using data from all channels whereas the Graz features reduce



CHAPTER 5. EXPERIMENT 1: MOTOR IMAGERY 32

Sub 1 Sub 2 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Subject Average
LFD (low) 60 65 58 56 56 64 56 51 58
LFD (high) 55 73 55 53 52 61 55 51 57
SLPM (low) 56 81 58 60 51 73 60 51 61
SLPM (high) 56 87 55 56 53 66 68 55 62

Table 5.3: Summary of classification performance (in %) for two classifiers (LFD and SLPM) in low
and high frequency bands using the all-channel feature vectors in the motor imagery experiment.
The low and high frequency bands were selected according to Table 5.1. The best per-subject
performance is in bold. SLPM shows better overall performance with the all-channel feature
vectors.

the dimensionality by hand-picking features (channels and frequencies). If using Graz-like
BCI features were a better-distinguishing representation, the respective results for LFD and
SLPM in the low and high frequency bands should be particularly different. This is not the
case and in certain instances classification performance is better for the all-channel feature
representation. When comparing LFD and SLPM for the all-channel feature representation,
it becomes clear that SLPM seems to better handle the higher dimensionality of the discrim-
ination problem (also see Section 7.2).

We now look at the results from SLPM classification at a finer-grained scale. Particularly,
Figure 5.4 shows the SLPM classification performance at particular frequencies between 5-
100Hz across all subjects. This whisker plot nicely highlights the mean classification error
at each frequency, the variance amongst subjects and the lowest and highest error. Note
that these results are represented in classification error and not classification performance,
where classification error is defined as error = 1− performance . Thus, an error of zero is
most desired. This figure shows us that frequencies less than 30Hz are best at distinguishing
between the two tasks for the majority of all users. After about 30Hz the mean classification
error hovers around 50%, indicating little distinguishability.

A tabular summary of these classification results averaged over 4Hz bins for each subject
can be found in Table 2. This tabular view gives credit to those subject’s results whose
classification performance is otherwise anonymized in the whisker plot. It further shows us
which frequency bins yielded best classification performance and cleanly shows more success
for certain subjects (as high as 87% performance for subject 2, for instance).

5.4.2 Automated Feature Selection with SLPM

In addition to obtaining classification results with SLPM, we can perform automated feature
selection using the high-dimensional weights for the decision hyperplane as described in Section
3.3. In this section we observe those channels and frequencies which were näıvely selected during
the classification process.
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Figure 5.4: Whisker plot of classification error for different 1Hz-wide frequency bands for all
subjects using the All-Channels feature representation. The box at each frequency shows error
variance as well as the average classification error (red line). Dotted lines extend to classification
errors within two standard deviations of the mean. Red crosses indicate statistical outliers. It is
clear that classification performance for the average subject is best before 30Hz, and most notably
between 10-27Hz.



CHAPTER 5. EXPERIMENT 1: MOTOR IMAGERY 34

Frequency Band Sub 1 Sub 2 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Subject Average
5-9Hz 56 75 57 58 51 69 57 53 59

9-13Hz 57 83 58 59 51 72 60 52 61
13-17Hz 53 85 56 58 53 67 63 55 61
17-21Hz 55 87 54 57 56 65 66 57 62
21-25Hz 56 87 53 55 53 66 69 53 62
25-29Hz 55 85 54 54 49 64 73 54 61
29-33Hz 54 80 50 51 46 60 70 51 58
33-37Hz 53 72 50 52 44 53 70 46 55
37-41Hz 52 60 50 49 48 49 76 50 54

Table 5.4: Per-subject SLPM classification results (in %) for the motor imagery experiment be-
tween 5-41Hz for 4Hz-wide frequency bands using the All-Channels feature represntation. Values
in bold indicate the frequency band at which the highest classification performance was obtained.
Frequency bands in which highest classification performance was achieved for some subject are
additionally highlighted. This clearly shows (with the exception to subject 8) that highest dis-
crimination between left-hand and right-hand motor imagery are found in µ and β rhythms.

Selected Channels

In order to verify that the selected channels lie over the expected neurophysiological regions it is
useful to visually inspect the selected channels on a scalp plot. Figure 5.4.2 shows 360-degree scalp
plots for two different frequency bands. Since it has been demonstrated in the classification results
that µ and β rhythms are most important in classification performance, we display the weight
vectors as projected on the scalp for the average subject for 8-13Hz and 18-26Hz. These scalp
plots undeniably indicate that the selected channels are precisely where one would expect them to
be, namely directly above the hand area of the motor homunculus in the left and right hemispheres.
An additional scalp plot is given for 40-44Hz in Figure 5.4.2 to demonstrate that the tight channel
localization found in the µ and β regions across the motor cortex, and more particularly directly
above the hand area of the motor homunculus, is not so for the selected-channels outside of these
two ranges.

Selected Frequencies

As established in the introductory chapters, the literature tells us that we should expect to high
distinguishability in the frequencies associated with sensorimotor rhythms. We have so far seen two
implicit pieces of evidence that selected frequency features do in fact correspond to to sensorimotor
rhythms. First, the classification results in Table 2show us that classification performance was
highest for all subjects (except one) in the frequencies corresponding to µ and β rhythms. The
second piece of evidence comes from the channel selection scalp plots which clearly show that
channel selection aligns with our expectations in the sensorimotor rhythm bands and does not align
in the case of frequencies outside of this area (40-40Hz, for instance). Direct evidence for selected
frequencies is provided in Figure 5.4.2 that displays the weights of different frequencies for the
average subject. These are computed by summing all weights for each subject at each frequency.
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Figure 5.5: Left: Topographic scalp plots for the average subject inµ rhythms (8-13Hz) with
superimposed feature weights for each channel as generated by the SLPM joint classification and
feature selection algorithm. The most important channels are cleanly localized over left and right
hand areas in the motor cortex. Right: The scalp plots for β rhythms (16-24Hz). Selected features
also clearly lie in the expected neurophysiological areas.

Figure 5.6: Topographic scalp plots for the average subject in higher EEG frequencies (40-44Hz)
with superimposed feature weights for each channel as generated by the SLPM joint classification
and feature selection algorithm. These frequencies lie outside of sensorimotor rhythms and do not
show the same neurophysiological correspondence with respect to selected channels.
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Figure 5.7: Min-max normalized weights for each frequency using joint automated feature selection
and classification with SLPM. Note that the selected frequencies (strongest weights) lie between
8-11Hz and 15-22Hz and align with the expectation of sensorimotor rhythm importance.

Then, the aggregate weights for each frequency are normalized with a min-max normalization,
namely the minimum value is subtracted from all weights and then all weights are divided by the
maximum weight. This has the effect of scaling all weights between 0 and 1. This figure shows
the selected frequencies to be clearly highest in the µ and β rhythms with a sharp fall off around
35Hz. The strongest frequencies are shown to in fact be in the 16-22Hz range which makes sense
since the best classification performances were often found in this band.

Recapitulation

Throughout the course of this chapter we have described in detail the first of two experiments
done in the present work. The success as marked by the results of the experiment indicates the
successful completion of two goals of the current thesis (see Section 1.1). First, we have verified
that the implemented BCI framework (The Singletrial Matlab Toolbox) properly works by
putting its tools to the test. Second, a traditional motor-imagery based BCI experiment was per-
formed for nine subjects and data were analyzed. The results mirror those found in the literature,
namely that nontrivial classification rates can be achieved using sensorimotor-based features for
imagined left-hand and right-hand motor movements. Classification performance rates of up to
87% were found. Furthermore, sophisticated joint classification and feature selection algorithms
increased the classification performance for higher-dimensional feature vector representations while
simultaneously providing näıvely selected features that agree with the current neurophysiological
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and frequency-domain understanding of EEG signals based on imagined motor movement. More
particularly, the automated feature selection algorithms chose EEG channels lying directly over
the left and right hand areas in the motor cortex and favored frequencies originating from the
well-studied sensorimotor rhythms.



Chapter 6

Experiment 2: Novel Cognitive
Tasks

The third and final goal of this thesis is to use an experimentally validated BCI platform to-
ward exploration of new cognitive tasks for BCI control and for neuroscientific verification of said
cognitive tasks. The following experiment mirrors as closely as possible the motor imagery ex-
periment described in Chapter 5 exploiting the idea that solid task analysis can be performed if
nothing changes more than the tasks used for BCI control. More specifically, the same protocol
used in the motor imagery experiment is recycled with only slight variation. These variations
are delineated throughout the chapter but it is useful to think of this experiment as a repeat of
the experiment outlined in Chapter 5with the slight modification of substituting two cognitive
tasks for the left-hand and right-hand motor imagery tasks. Another noticable difference between
these two experiments is how the novelty of these two tasks changes the analytical goals from
the previous verification approach to a more exploratory approach. In other words, the results of
this experiment are unable to be compared against a baseline of past research thereby making it
difficult to confirm anything with certainty. This experiment provides first research into the use
of these two cognitive tasks for BCI use and for using a BCI framework to validate their previous
neuroscientific findings.

The remainder of this chapter is assembled in the precisely the same way as Chapter 5. To avoid
repeating information, references will be made where methods and techniques used are precisely
the same as in the previous experiment. We begin by again outlining the experimental methods
tracing the experiment from its origin of capturing data from subjects to the storage of data for
offline analysis. Next, we discuss again the preprocessing techniques used on the EEG data as
well as the features extracted from the raw EEG signals. The same classification paradigms were
applied yielding a series of results that mirror the lines of analysis taken in the motor imagery
experiment. Care is taken in the final section to avoid too much discussion for incongruent results.
These further discussions are left for the complementary Section 7.3.

38
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Figure 6.1: The electrode placement for 64 channels of the 256-channel Biosemi cap used for six
of seven subjects in the cognitive imagery study. The subset of electrodes used are highlighted in
blue.

6.1 Methods

Subjects
An EEG experiment with seven healthy, adult subjects (five males, two females) was performed.
All of the subjects participated in the previous motor imagery-based BCI experiment. Five of
the subjects participated in this experiment in a separate EEG session, weeks after involvment in
the first experiment. Two of the subjects participated in the two experiments back-to-back. The
current experiment consisted of one EEG session lasting between 30-40 minutes, with interjected
breaks every 5-7 minutes. All subjects volunteered to participate and provided written, informed
consent. Data for all seven subjects is included in the following analyses and results.

Data Collection
Data was captured using 64 active Ag/AgCl electrodes and a Biosemi ActiveTwo AD amplifier
and converter. It was decided to use 64 channels for the cognitive experiment to obtain a higher
spatial resolution for two reasons. First, brain regions important in classification of the two novel
tasks is not as well-known and second, the spatial distribution activity may prove to be more
spread out for cognitive tasks than in motor imagery tasks. Electrodes were placed atop a layer of
electroconductive gel according to the closest-fit of the 64-channel, 10/20 Biosemi cap inlayed on
the 256-channel, ABC layout Biosemi cap. For six subjects these 64 of 256 channels were used for
recordings and for one subject the closest-fit of 64 of the 192-channel, 10/20 Biosemi cap were used
(see Figure 6.1). To interpolate electrooculargrams (EOG) for later artifact detection, four flat
electrodes were placed on the face: two above and below the left eye, one to the left of left eye, and
one to the right of the right eye. Impedence in the electrodes was verified to be at an acceptably
low level before beginning the experiment. EEG data for 64 scalp and 4 EOG electrodes were
digitized at 256Hz and stored for later analysis.

Experimental Design
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This experiment was conducted in under precisely the same conditions as the motor imagery
experiment. As all subjects had participated in the first experiment, they were all familiar with
the general paradigm. They were seated in the same room and led through a number of practice
trials while being explained what each stimulus meant. Subjects were given the analogy to the
prior experiment, namely that everything remains the same with the exception to the two tasks
that they are asked to perform. These two tasks were accompanied by new visual stimuli and were
described as follows:

• Inner-speech command (ISC)
The subject is to internally command the virtual avatar to “go away” or “get out of here”.
All subjects are minimally bilingual, and were thus instructed to use whatever language
they felt most comfortable with and whatever particular command they felt like using. The
key requirements were that they were to imagine detesting or being sick of the the avatar’s
presence and to command it to leave.

• Own Body Transformation (OBT)
The own-body transformation consists of projecting one’s body outward from their current
perspective into the physical position of another. The subjects were told to physically project
themselves into the shoes of the avatar. This is a nonintuitive task so several methods were
discussed. Possibilities included to imagine directly “hopping” into the avatars shoes and to
imagine seeing oneself in its place or to envision physically leaving ones body, rotating 180
degrees, and finishing the projection and rotation in the place of the avatar. The subject was
to select the method that made most sense to them. Methods were informally controlled by
asking how the subject chose to perform the action between experimental blocks.

These two tasks were particularly chosen to be analogous to the left and right-hand motor imagery
tasks from the previous experiment. Namely, previous studies show that inner-speech activates
areas localized primarily in left hemisphere and SMA and that OBT task initiation results in
right hemispheric, TPJ activation [4, 32]. Task selection was performed because of this left/right
hemispheric distinction and the distinctively localized functional brain areas involved in the two
tasks. Adding the “detest” and “compassion” elements was nothing more than an additional flavor
that could hopefully help further separate these two cognitive tasks.

A block consisted of 200-300 trials (half ISC, half OBT). Each trial begins with a 2s fixation
cross, as before. Following this comes a “warning” stimulus which lasts for 1s and consists of a 3-
dimensional standing avatar with an overlayed green circle on its chest. This green circle was kept
for consistency with the previous experiment. Next, a randomly selected task cue is presented
in the form of a rotating arrow or a talk box. The rotating arrow indicated that the subject
should perform the OBT task whereas the comic-like talk box indicated the ISC task. A graphical
representation of a trial with its accompanying visual stimuli can be found in Figure 6.1.

6.2 Data Preprocessing

Most of the common preprocessing performed in the motor imagery experiment was replicated. It
was decided again to keep all trials for analysis. All subjects were initially recorded at 256Hz so
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Figure 6.2: A single trial of the cognitive imagery study with accompanying visual stimuli. Subjects
are asked to relax, take note of the stimulus warning, and then perform the mental task of either
imagining to give the command “go away” to the avatar or to imagine physically placing one’s
body in the avatar’s shoes. Afterward, the subject is given a few seconds of rest and another trial
begins.
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no downsampling was necessary. The continuous, raw EEG data was split and packaged in the
same way as was done for the motor imagery experiment, resulting in 2 seconds of EEG data per
trial representing the baseline and task-related data for the trial. The raw data was then baseline
normalized.

A channel reduction from 64 channels to the nearest-fit of the 32-channels used in the previous
experiment was performed after initial analyses showed the dimensionality of the problem to be
a limitation in classification (see the related discussion in Section 7.3). The 32 channels were a
proper subset of the 64 channels, so comparisons between studies and across subjects can be safely
made. After throwing away half of the channels, all remaining 32 channels were used for analysis
in all subjects. Following this, specific data preprocessing was performed based on the eventual
feature representation of the signal. The two main preprocessing techniques are outlined below.

1. Manual Channel Reduction and Interpolation
We begin by performing a similar operation as was done during the motor imagery experiment
preprocessing stage. First, a CAR spatial filter was applied to all channels (see Section 3.1.2).
Based on our current understanding of the neurophysiology of these two cognitive tasks, two
electrodes were first selected topographically selected. One electrode located near the left-
hemispheric interior frontal gyrus was selected (F3) for its relation to internal speech. A
second electrode was selected located near the right-hemispheric temporal-parietal junction
(C15) known for its known functional role in own-body transformations. Next, a small,
reduction Laplacian spatial filter was applied consisting of manual selection of these two
channels and a small Laplacian using the finite difference method. Particularly, these two
channels are interpolated by subtracting from them the mean signal at their five-nearest
neighboring electrodes. At the end of this preprocessing stage we have further reduced 32
raw EEG signals to two Laplacian-interpolated signals.

2. Feature Selection: Channel and Frequency Approach
The second preprocessing style is precisely the same as the second preprocessing technique in
the motor imagery study. The distinction is again made between the “channel” perspective
and the “frequency” perspective. If the destination feature representation is the “all-channel”
approach, all channels are kept and subjected to a CAR spatial filter.

6.3 Feature Extraction and Data Classification

We are now faced with the nontrivial task of representing the two seconds of preprocessed data to
uniquely describe the two tasks. It was elected to again go with SMR-based feature representa-
tions, namely all of the following representations are grounded in ERD. This choice reflects one of
many possible ways to represent the signals and may not be optimal (see Section 7.3 for further
discussion). The two feature representations are graphically portrayed in Figure 6.3.

1. Hand-Crafted Feature Representation
As a first attempt at uniquely representing the signals coming from these two cognitive
tasks we take inspiration from both the Graz-like features used in the motor imagery ex-
periment and from current neurophysiological and EEG frequency domain-based research.



CHAPTER 6. EXPERIMENT 2: NOVEL COGNITIVE TASKS 43

Sub 1 Sub 2 Sub 4 Sub 7 Sub 8 Sub 9
Low Band 13-17 9-13 5-9 17-21 29-33 13-17

Middle Band 17-21 21-25 25-29 49-53 53-57 49-53
High Band 95-99 49-53 91-95 79-83 79-83 83-87

Table 6.1: The three hand-picked frequency bands (in Hz) for each subject used in computation
of the manual selection features for use in classification of the cognitive OBT and ISC tasks. Note
that the categories of low, middle and high band could loosely be labeled with µ, β, and γ. In
some subjects the selected frequency bands do not span all of these classes and instead use several
bands from the same class of bands.

More specifically, we use the two interpolated channel preprocessing scheme and represent
these two channels by four ERD values, as in the motor imagery experiment. The four ERD
values for each of these two channels are again computed by calculating the ERD between
the first 250ms of task-related data against the first 250ms of baseline activity, the second
quarter second against corresponding baseline segment, and so on. These ERD values are
also computed over MEM-estimated power at three frequency bands, in contrast to the two
bands used in the motor imagery experiment. These three bands were hand-picked for each
subject based on preliminary classification results across all bands. One noteworthy differ-
ence in these bands is the fact that they often lie in high-frequency γ regions and are no
longer limited to µ andβ bands. Evidence shows that higher-frequency γ bands play a role
in cognitive processing, so it was desired to reflect this in the signal representation. Table 1
highlights the hand-picked frequency bands used for this feature representation.

2. All-Channel Approach: All Channels, Individual Frequencies
The all-channel representation is derived as in the motor imagery experiment. The average
power estimation at a single frequency across the four quarter-second periods in the baseline
is made. Then, the ERD for each channel is computed by comparing this baseline average
against the average at the task-related data segment. The net effect is that each trial is
summarized by one ERD value per channel.

As before, the feature matrix is unfolded into a single vector for each trial and an associated trial
label (ISC or OBT) is stored for comparison. For example, the hand-crafted feature representation
for each trial is 2 channels x 4 ERD-values x 3 frequency bands and is flattened to a single 24x1
vector.

6.4 Results

Results are provided for both classification and feature selection using 10-fold cross validation
across two types of feature representations as in the motor imagery experiment. Effort was made
to follow the same linear line of analysis as was followed in the previous chapter. That is to say,
all figures and tables in this section have counterparts in the motor imagery experiment results.
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Figure 6.3: Left (A). Hand-crafted features extracted from preprocessed EEG signals . First, each
trial is broken into eight windows of 250ms for the two channels located over left frontal and
temporal-parietal areas. Spectral estimations are then made across thre hand-pickedfrequency
bands. Finally, ERD is computed by matching the estimates from first 250ms period of task-
related data to the first 250ms period of the baseline period, the second to the second, etc. This
leaves one ERD per 250ms for two channels and three frequency bands (a 24-dimensional vector).
Right (B). Features extracted for eventual automated channel feature selection. Each trial is
broken into eight windows of 250ms for all 32 channels. Spectral power estimations are made for
each 250ms and the average is taken for the baseline period and the task-related period. Finally,
a single ERD value is computed using the averaged spectral powers leaving one ERD per channel
(a 32-dimensional vector).
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Sub 1 Sub 2 Sub 4 Sub 7 Sub 8 Sub 9 Subject Average
LFD 57 57 59 57 52 61 57

SLPM 52 51 51 56 51 66 55

Table 6.2: Classification performance (in %) for two classifiers (LFD and SLPM) using the hand-
crafted feature vectors described in Section 6.3. The best per-subject performance is in bold. At
first glance, it can be seen that LFD outperforms SLPM for every subject with exception to subject
9, who stands out as the most promising subject for discrimination. Note also that performance
is consistently lower than the motor imagery experiment counterpart.

6.4.1 Classification Results

The subsequent classification results represent classification performance for 10-fold cross valida-
tion for six of the seven participants in this study. Results are split depending on the underlying
feature representation.

1. Hand-Crafted Feature Representation
Using a hand-crafted feature representation of two interpolated channels located over Broca’s
area and the temporal-parietal junction across three subject-dependent frequency bands, we
compute the classification error for LFD and SLPM using a 10-fold cross validation scheme.
Table 1 presents these results. For the first round of data analyses, it can be seen that
classification performance is on the whole lower than in the motor imagery experiment. On
the other hand, there are a couple of subjects (4 and 9) who stand out as having classification
performance at levels considerably above chance. This motivates further investigation and
leads us to now explore what happens if we classify with features extracted from all 32
channels.

2. All-Channel Approach: Individual Channel, All Frequencies
Though classification results of the the hand-crafted representation indicate that the OBT
and ISC tasks are somehow discriminable, using all channels and looking across a larger band
of frequencies is a more exploratory tactic. Since the important channels and frequencies for
discriminating these two tasks are not known apriori, it is informative to use the all-channel
representation across 1Hz-wide windows. By computing the classification performance at
each 1Hz for all channels gives us a large 2-dimensional results matrix with one classification
performance per frequency (see Appendix A.1). We begin by looking at classification perfor-
mance using the all-channel representation for LFD and SLPM. The results are in Table 6.3
and clearly demonstrate that again, the all-channel representation better distinguishes be-
tween the two classes. Furthermore, SLPM handles this high, 32-dimensional representation
better than LFD as all subjects’ top performances are found by SLPM. Subject 9 receives
up to 67% classification accuracy using this simple feature representation.

Since SLPM better handles this feature-representation we zoom in on its performance for
each subject across each 1Hz-wide frequency band between 5-100Hz. The whiskerplot in
Figure 6.4 demonstrates the mean classification error as well as maximum and minimum
classification errors at each frequency. Again, note that this figure is in terms of classifi-
cation error, not performance. The results show that for most subjects, classification rates
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Sub 1 Sub 2 Sub 4 Sub 7 Sub 8 Sub 9 Subject Average

LFD (low) 54 56 53 51 55 58 55
LFD (med) 54 62 51 51 54 58 53
LFD (high) 53 50 53 50 53 56 53
SLPM (low) 55 63 57 55 60 66 59
SLPM (med) 55 63 59 55 60 67 60
SLPM (high) 52 49 53 53 60 67 56

Table 6.3: Summary of classification performance (in %) for two classifiers (LFD and SLPM) in low
and high frequency bands using the all-channel feature vectors in the motor imagery experiment.
The low and high frequency bands were selected according to Table 5.1. The best per-subject
performance is in bold. SLPM outperforms LFD for all subjects using the “all-channel” feature
vectors.

are around chance (50%). The lowest average errors (40-45% error) tend to fall between
20-40Hz. There are a few subjects, however, that obtain good classification performance in
the higher frequencies as demonstrated by low classification error for frequencies higher than
50Hz.

To circumvent the anonymity of good candidates in the whiskerplot, we instead look at
these results in a tabular, averaged format for 4Hz-wide frequency bands. Table 6.4 provides
summarized results highlighting the frequency bands yielding best performance for each sub-
ject. A full table can be found in appendix in Table A.3. These results further demonstrate
that the important bands for classification performance do indeed fall into three frequency
categories, a low band (˜5-25Hz), a medium band (49-57Hz) and a high band (79-91Hz). It
is clear that high classification accuracy can also be obtained in this high band, perfectly
aligning with evidence that cognitive tasks cause coherency in γbands [11]. This is in direct
contrast with the motor imagery study where the best classification rates were always found
in frequency bands less than 30Hz. This full exploration shows us that classification rates
of up to 67% are achievable using a simple, SMR-based feature representation and a sophis-
ticated classifier. Certain subjects (e.g. 2, 8 and 9) clearly perform better than the others,
whose classification results tend to hover around 50% (pure chance).

6.4.2 Automated Feature Selection with SLPM

Selected Channels

The automated channel selection results are given via the average subject scalp plot for two low
band, one medium band, and one high band frequency (Figures 6.5, 6.6and 6.7, respectively).
The selected bands were chosen at 9-13Hz, 21-25Hz, 49-53Hz, and 79-81Hz based on classification
performance from the previous section’s findings. The results are mixed and do not clearly show
selected channels coming from the hypothesized regions. This fact, as well as possible explanations
of their meaning is discussed at length in the subsequent discussion chapter in Section 7.3.
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Figure 6.4: Whisker plot of classification error for different 1Hz-wide frequency bands for all
subjects in the cognitive experiment using the “all-channels” feature representation. The box at
each frequency shows error variance as well as the average classification error (red line). Dotted
lines extend to classification errors within two standard deviations of the mean. Red crosses
indicate statistical outliers. Upon inspection, the best average classification error lies between
20-40Hz. Most subjects obtain classification rates around chance (50%) hereafter. For several
subjects, however, high frequencies (>65Hz) yield low errors. The lowest classification error, for
instance, was at 49Hz.
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Frequency Band Sub 1 Sub 2 Sub 4 Sub 7 Sub 8 Sub 9 Subject Average
5-9Hz 52 63 57 53 53 60 56
9-13Hz 53 63 54 52 55 65 57
13-17Hz 55 61 54 51 54 66 57
17-21Hz 55 62 55 55 54 64 57
21-25Hz 53 63 58 53 56 63 58
25-29Hz 52 61 59 53 58 61 57
29-33Hz 51 56 58 53 60 61 56
49-53Hz 52 49 53 55 59 67 56
53-57Hz 52 48 50 54 60 64 55
79-83Hz 49 49 51 53 60 66 55
83-87Hz 51 50 52 53 60 67 55
87-91Hz 51 49 51 52 60 66 55

Table 6.4: Per-subject SLPM classification results (in %) for the cognitive experimentfor 4Hz-wide
frequency bands using the “All-Channels” feature represntation. Only those frequencies leading to
some subject’s best classification rate are included. Subject IDs refer to the same subject as used
in the motor imagery study. Unlike in the motor imagery study, the best results come from a wide
range of frequencies including high γ frequencies.

Figure 6.5: Topographic scalp plots for the average subject in two “low” bands (9-13Hz and
21-25Hz) with superimposed feature weights for each channel as generated by the SLPM joint
classification and feature selection algorithm. The selected channels lie primarily over motor
cortex but are well distributed along the entire scalp.
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Figure 6.6: Topographic scalp plots for the average subject in a “middle” band (here 49-53Hz)
with superimposed feature weights for each channel as generated by the SLPM joint classification
and feature selection algorithm. The selected channels are cleanly isolated to left frontal-temporal
regions. This strong weight preference is located near Broca’s area but being at the periphery
could also reflect electromyographic (EMG) muscle noise from the neck.

Selected Frequencies

Frequency selection was performed exactly as it was in the motor imagery experiment, namely
subject weights were summed for each frequency and normalized to produce Figure 6.4.2. This
shows two strong peaks of prefered frequencies, those around 45-50Hz and those between 80-95Hz.
Interestingly, several of the best classification performances were found within these regions. This
also is in line with the ongoing hypothesis that these cognitive tasks can be distinguished on low,
middle, and high band features.

Recapitulation

This chapter has focused on presenting a cognitive BCI-based EEG experiment from scratch to
its results. Two novel cognitive tasks inspired by previous cognitive neuroscientific research were
used as the control signals in the BCI. More specifically, subjects were either asked to mentally
command an avatar to “go away” (the inner-speech command task) or to envision projecting
themselves into the avatar’s position (the own-body transformation task). Using the same BCI
framework whose correctness was verified by experimental results during the motor imagery study,
data were analyzed in precisely the same ways as the previous motor imagery study. This mirrored
analysis provides insight as to how sensorimotor-based features classify these tasks and how close
the automatically-selected frequency bands and channels align with our hypotheses.
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Figure 6.7: Topographic scalp plots for the average subject in a “high” band (here 83-87Hz) with
superimposed feature weights for each channel as generated by the SLPM joint classification and
feature selection algorithm. The selected channels are mostly around frontal and SMA regions
with a preference to the left hemisphere. Another favored electrode is directly above the right eye
and may indicate that this channel is driven by noise or artifacts.

Figure 6.8: Min-max normalized weights for each frequency in the cognitive experiment using
joint automated feature selection and classification with SLPM. Note that the selected frequencies
(strongest weights) lie between 8-11Hz and 15-22Hz and align with the expectation of sensorimotor
rhythm importance.
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The results indicate that these two tasks can indeed be well-distinguished with rates of up to 67%.
As in the motor imagery study, only several subjects seemed to perform well whereas the others all
had classification rates at and around chance level. Using the SLPM joint classification and feature
selection algorithm “important” channels and frequencies in the classification of these signals were
distinguished. Though the channel selection does not directly align with the hypothesis that the
most important channels are around Broca’s area and the temporal-parietal junction, this can
explained by previous research indicating that cognitive processes are highly distributed. In short,
this experiment provides a first crack at analyzing these types of cognitive data in a BCI framework.
Important frequencies were found to come in three wide bands: a µ band around 9-13Hz, a βband
around 21-30Hz, a γband around 45-55Hz, and a high γ band around 85-95Hz. There are plenty
of improvements to be made and alternative ways of analyzing the data, the most noteworthy of
which is further investigation into how to represent these type of EEG signals for discriminative
purposes.



Chapter 7

Discussion

We now enter a more in-depth discussion of the results presented from the two experiments. We
begin this discussion with general observations that apply to both of the experiments and their
results. This covers topics such as how we can compare data across the experiments and the types
of results should generally expect from any BCI-like experiment. Next, we discuss some of the
results in greater detail for both the motor imagery and cognitive experiments and refer to several
analytical techniques that were left out of the above results sections. Finally, a number of potential
future research directions are presented as motivation for continued work. Many of the following
discussions have their origins in the results sections of the two experiments. It should be thus
noted that this chapter’s flow is a bit different than preceding chapters in the sense that many of
the following discussions are only related by a general categorical topic and do not cleanly flow
from one to another.

7.1 General Observations

Comparing Classification Results

Cross Validation Results

Though cross validation provides a way of generalizing the classification error by averaging clas-
sification performance over several splits of the data, the outgoing results can vary each time
depending on the data splits. The variance in the results can lead to inconsistencies while com-
paring across classifier type or feature representation. Throughout this thesis great care has been
taken to provide an accurate estimation of classification performance. One other possibility is
to use leave-one-out (LOO) cross validation as described in Section 4.1. LOO cross validation
provides more “fair” intra-subject results while varying classifiers and feature representations as
each sample is used in both the training set and the test set. For sake of computational time, it
was opted to use 10-fold cross validation in place of LOO cross validation. LOO cross validation
is, however, available in The Singletrial Matlab Toolbox.

52
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Comparing Results Across The Two Experiments

One of the interesting aspects of mirroring the two experiments and using the same subjects is
that we can make cross-experimental observations. Perhaps one of the most interesting concepts
to study is how individual subjects performed at the two sets of different tasks. By comparing
Tables 5.3 and 6.3 we can clearly see that those subjects who demonstrated the best classification
performance with motor imagery tasks were not necessarily the ones responsible for the highest
classification performance between the cognitive tasks. These differences beg the question of what
constitutes an ideal candidate for a given set of tasks. That is, how can we select a set of tasks
that are well-suited to each subject? Unfortunately the picture is more complex than this. Since
the two experiments were done on separate days, subject fatigue, mental state, and concentration
can also play a role. In any case, the evidence points to no direct correlation between those who
are talented at performing motor imagery and those who are able to perform the ISC and OBT
tasks.

Classification Results: Is This What We Expect?

A quick glance at the classification rates of the majority of the subjects for the two experiments
can be discouraging. It seems that only a few subjects have the ability to be well classified for
the two experiments whereas others show nothing more than chance-like levels. This question
of what to expect in terms of classification results for a general set of näıve BCI users has been
explored in various contexts . Large studies of show only about 10% of näıve BCI users can achieve
classification rates greater than 80% on their first try. The majority of the users, however, achieve
classification rates of only 55-65%. It is also claimed that a certain population of users is “BCI-
illiterate”, that is, they are forever incapable of using BCIs for control. These facts encourage the
results from the present work which show that 2-3 out of 8 subjects could control the BCI with
success rates approximately between 75-90%. The second experiment shows that for 2-3 users out
of a small group of 6 subjects could control the BCI with 60-70% accuracy.

Because of these well-known differences amongst näıve subjects and their abilities to control a BCI,
often times a series of pre-screening sessions are performed across many subjects, amongst whom
only the top three or four subjects are invited for continued participation [28]. This tactic generally
produces better classification results as the screening process takes out poorer subjects and results
only reflect the best 25-35% of the results. Appendix A.2 provides classification results for the best
3 subjects to further demonstrate that the motor imagery results compare with previous findings.

Computational Time and Offline Analyses

All of the analyses in this work took place offline. When considering a move to an online setup the
data structures and algorithms used for classification play an important role in the interactivity of
classification results. Subjectively speaking, the Linear Fisher Discriminant classifies data signifi-
cantly faster than the Sparse Linear Programming Machine which must solve a linear optimization
problem to obtain its decision hyperplane. For simple, low-dimensional feature vectors such as the
Graz-like features used in the motor imagery experiment and the hand-crafted features used in the
cognitive experiment, the difference in performance between LFD and SLPM is marginal. On the
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other hand, the respective time it takes for each algorithm to come up with its decision notably
differs.

It should be noted that increasing the complexity of the feature representation, such as the move
to the “all-channel” representation, highlights SLPM’s sophistication in distinguishing higher-
dimensional data. All of the top results found in this paper were found by using SLPM and
a higher-order feature representation. Though SLPM finds a better dividing hyperplane than
LFD in higher-dimensional data, it still has its limitations. As one increases the “difficulty” of the
problem, that is, when the two classes’ feature representations are not unique, SLPM increases in
the computational time it takes to find a solution. At the limit, the optimization problem cannot
be solved and one simply cannot use SLPM for such complex machine learning problems. The
reality of this consequence played a role in reducing the 64 captured electrodes to 32 electrodes in
the cognitive experiment (see Section 7.3further below).

7.2 Motor Imagery Experiment

The results provided for the motor imagery experiment proved to be non-controversial. That is,
classification performance was in the expected range for näıve BCI users and the automatically
selected features corresponded well to previous findings. Instead of repeating the concordant
findings, this section describes a couple of discussion points started in the section and covers a
couple side-issues left out of the initial analysis.

Preprocessing Observations

It should be mentioned that other preprocessing techniques were tried before selecting the current
set of temporal preprocessing strategies. The preprocessing is heavily dependent upon how you
eventually wish to classify the data. First, zero-mean normalizing the data had very little effect on
the classification performance. This can be easily explained by looking at the types of classifiers
that were used in the analysis. A zero-mean normalization simply causes the data to linearly shift
and both LFD and SLPM can adapt their decision hyperplanes to adapt to linear transformations
of the underlying data. On the other hand, unit variance normalization had a dramatically neg-
ative effect on classification performance. The unit variance is a nonlinear transformation of the
underlying data and is not adapted to by the LFD and SLPM models. Unit variance normalization
is generally used if the data are going to be submitted to a neural-network classification algorithm
such as Learning Vector Quantization (LVQ) or Multi-layer Perceptrons (MLPs).

Classification Results

One of the key findings is in comparing the classification performance using the same classifiers
across different feature representations. The results show how absolutely critical signal representa-
tion is for distinguishing between the two tasks. A second factor is the strength and sophistication
of the classification technique. These are both highlighted by the initial results which show classi-
fication performance for Graz-like BCI features. Both LFD and SLPM perform at about the same



CHAPTER 7. DISCUSSION 55

level given this feature representation. The benefits of the complex distinctions that the SLPM
can make are not noticed in this context. However, simply moving to the “all-channel” feature
representation showed a marked increase in performance (up to 15-20%) for SLPM classification.
LFD performance also tended to increase by changing feature representations, but of critical note
is that five of the eight subjects had their best-found classifications as found by SLPM in the
second feature representation. The difference in performance with respect to the two feature rep-
resentations shows us how fragile of a state of affairs things are. Manual selection of the expected
channels and frequencies (ie: Graz-like BCI features) had little benefit according to the results of
this experiment.

Another particular result is worth comment: the classification results for subject four using the
Graz-like BCI feature representation. The model built for subject 4 was consistently “wrong” in its
discriminative output. Since the there are only two classes to distinguish between, this consistency
was exploited and outgoing classifier labels were inversed to obtain results. The reasons behind this
behavior remain unknown. Futher BCI experiments must be done with this subject to determine
if it was a session-based quirk or if the subject should be excluded.

Automated Feature Selection

Selected Channels
The scalp plots provided in Section definitively show what we expected, namely that the most
important channels for classification were the bilateral, motor cortex regions above the hand area
of the motor homunculus. These are nicely isolated in the frequencies we expect them to be (e.g.
sensorimotor rhythms) and are not present in higher, γband frequencies.

Selected Frequencies
Since a single classification run was performed for each 1Hz bin, the magnitudes in the weight vector
for a particular frequency differ amongst frequencies, even for the same subject. To solve for this,
some type of normalization has to be performed to make each weight’s relative importance on the
same scale. For the current study it was decided to divide each weight by the maximum weight
for each classification run. That is, for each particular frequency, for each subject, all weights
were normalized to be maximally as large as the largest value. Then, the aggregate frequency
weight plot was computed by summing these normalized weights for all subjects and then again
normalizing the result with a min-max normalization. It is currently unknown what the best way
to compare the magnitudes of the weight vectors for the SLPM across classification trials.

Joint Channel/Frequency Selection
Given that we have feature weights for all channels and for all frequencies, we can construct a
2-dimensional portrait of how important each frequency is for each channel. These channel vs.
frequency plots were left out of the above analysis because though they exhibit several expected
results, namely that the weights are stronger for the channels we expect them to be, there are
several incongruencies that could be caused due to the aforementioned weight-normalization issues.
A couple of these channel-frequency plots are provided in Appendix A.1.
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7.3 Cognitive Experiment

The results from this section are difficult to definitively discuss. Though we have several hy-
potheses about the important underlying phenomena of the two cognitive tasks investigated in
this experiment, there are several deficits in our knowledge. First, the way in which to properly
extract features from such tasks for BCI control is unknown. For a first exploration we repeated
the representations that worked in the above motor-imagery paradigm. This may be far from
the correct way of representing such signals for distinguishing between the two tasks. Next, we
have no clear picture of what the important frequencies nor associated neurophysiological regions
are important for distinguishing between these two tasks. Both tasks are, however, inspired by
a number of studies that have begun investigating the important functional brain regions and
the frequency-domain characteristics of the corresponding EEG signals. This second hole in our
knowledge signifies that though we have hints of where to look for automated feature selection
of channels and frequencies, there is no golden standard to compare results against. Ideally this
experiment is an aid in the search for uncovering more information about these two tasks from
another perspective, namely through the lens of a BCI framework.

Task Selection

All subjects were asked how difficult the different tasks were. Since all subjects had participated
in both experiments, an informal ranking was made where all subjects believed the most difficult
task to be OBT followed by left-hand and right-hand motor imagery, and the simplest being the
internal-speech command. This informal ranking tells us a lot about task selection for BCI control.
It is clear that people do not consciously perform the OBT task on a daily basis, but people do
however internally speak for extended periods every day. The familiarity of the task can help
users directly immerse in the environment and not become stressed that they are not properly
performing the desired task. The dramatic difference in task difficulty between the OBT and
ISC tasks could be a point of contention for this study, but these tasks were selected for their
neuroscientific relevence.

Though motor imagery provides strong, differentiable, and well-studied EEG signals with partic-
ular characteristics, the informal ranking also shows us that motor imagery is not entirely natural
either. The utility of moving toward cognitive tasks in BCI control is that subjects can use mental
tasks that they are familiar with on a daily basis and that require no training.

Feature Representation

As mentioned above, both the underlying feature representations (i.e. the “hand-crafted” and “all-
channel” feature representations) are based on the premise that event-related desynchronization
(ERD) plays a roll in distinguishing between cognitive tasks. Though this premise has been shown
to be true with imagined motor movements, it is not verified for cognitive task use. On the other
hand, it is not too unrealistic to imagine that there is a measurable ERD while performing the
ISC and OBT tasks. There are certain to be motor components associated with internal speech
as well as body placement.
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The difficulty of SLPM to distinguish between these two cognitive tasks can provide important
insight. The most flagrant sign of the “difficulty” of distinguishing between the two tasks was
the inability for SLPM to find a dividing hyperplane for 64 channels. Even though data was
captured at 64 channels, it had to be reduced to 32 for analysis. This defeats the initial purpose
of exploring at a higher spatial resolution. Furthermore, while using the hand-crafted features it
took significantly longer for the SLPM algorithm to solve its optimization problem than it did for
the motor imagery task. These incidents point to one of two causes. First, it could be the manner
in which the features are extracted from the signals. Using a different feature representation may
cause the two tasks to be better separable. More dramatically, it could be the case that the tasks
simply contain too much overlap and they are too difficult to segregate regardless of the feature
representation.

Classification Results

The average classification performance for the cognitive experiment is lower than in the motor
imagery experiment. This can be for a number of reasons including feature representation, task
selection, or even the few number of subjects that took place in this experiment. Knowing that
only about 12% of näıve BCI users perform motor imagery tasks levels greater than 80%, we
would need at least ten subjects before we can statistically expect to see such results. Conversely,
there are already three subjects with a classification performance between 60-70%. Though there
were no stellar results, these preliminary findings indicate that these two tasks can in fact be well
discriminated.

Automated Feature Selection

Selected Channels
The automatically selected channels do not correspond with the loose hypothesis that the most
important channels would be over Broca’s area and the TPJ. This does not mean, however, that
nothing can be gleaned from looking at the results. The low-band features demonstrate that
the motor cortex, and areas around Broca’s area do play a certain importance in classification
distinction. In the 9-13Hz bin, for instance, there is bilateral selection around the frontal interior
gyrus (Broca’s area). The 21-25Hz bin shows heavy frontal electrode selection at the periphery of
the EEG cap. This could be reflective of the cognitive tasks or of an artifact driving the signal. In
the middle-band 49-53Hz channel selection is nicely isolated near Broca’s area, but again it lies at
the periphery and could indicate EMG noise from the neck muscles. Finally, the high frequency
band at 83-87Hz shows SMA channels to be the most important in distinguishing. This could be
the case as these cognitive tasks may include associated motor activity.

Selected Frequencies
The most important information to be gleaned from the automated feature selection of frequencies
is that there are consistently three clusters of frequencies that appear to be important in classifica-
tion of the ISC and OBT tasks. The first piece of evidence comes from classification performance
whose best results lie in three distinct clusters. The next piece of evidence is in the frequency
weight plot who shows three distinct peaks. One in SMR bands around 9-27Hz, one in a 45-55Hz
range, and one in the high gamma range of 75-90Hz. Further investigation is needed to explore
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the potential of these high frequencies in task discrimination of cognitive tasks used in BCI control
and to understand what role these frequencies play in the underlying cognitive processes.

7.4 Future Research

In this section we describe a scattershot set of ideas for future research directions and ideas. A
number of these ideas have already been put into action, that is, continued research is exploring
these concepts.

Data cleaning

In both experiments it was opted to leave all trials in for analysis to gauge how well sophisticated
methods could pick through imperfect data. Furthermore, the EOG was captured but not used
to detect eye artifacts. It is well known that these artifacts can have detrimental effects on the
classifiers, as the models reflect noise instead of the true underlying characteristics of the tasks.
In spite of this, the results are successful. It would be informative to manually inspect all trials
and “clean” the data to see the effect of artifact-free data on classification performance.

Hyperparameter Search Using Nested Cross Validation

Nested cross validation was referred to a number of times throughout the present work. The
Singletrial Matlab Toolbox has been implemented to support hyperparameter search with
a nested cross-validation scheme, but there was no time to analyze the data using this compu-
tationally lengthy operation. Ideally nested cross validation will improve classification rates by
automatically choosing the model order parameter for the MEM estimation and the regularization
parameter for the SLPM. It will be interesting to compare and contrast results for classification and
feature selection obtained with the optimal hyperparameters versus those manually set throughout
the present work.

A similar idea is to manually tweak the regularization/sparsity hyperparameter for the SLPM to
observe how feature selection is affected. Since this controls the sparsity of the weight vectors, it
should ideally hone in on the most important channels and frequencies, nullifying those who play
a marginal role. The effect of this parameter on the selected features is to be determined.

Cognitive Experiment Improvements

There are a number of possibilities to further improve the classification performance between the
ISC and OBT tasks. First, more data should be collected. Having more subjects will allow us to
notice the trends. Next, different feature representations (not based on ERD) should be explored.
This may permit the data from 64 channels to become classifiable by SLPM. In any case, moving
toward finding a representation that allows higher-dimensional feature vectors to be well-classified
is of particular import. Finally, investigation into the origin and importance of these higher-order
frequency bands in the ISC and OBT tasks is needed.
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Towards and Online BCI

One future goal of this project is to additionally move in the direction of an online BCI. This
move will change the types of algorithms that are used in the analysis, favoring those who can
react in a real-time environment. There are a number of technical challenges involved in building
an online BCI and there exist few (if any) non-commercial, online BCIs available to the research
community. Again, the burden lies on interested research groups to build and implement an online
BCI themselves. Preliminary steps have been taken to move the Singletrial Matlab Toolbox
in this direction.

Recapitulation

In this concluding chapter we have discussed the finer details of the experimental results while
making higher-level observations of the outcome of the current work. In general, it has been
demonstrated that all of the three goals set forth in the introductory sections were achieved by
first building and implementing a full-functioning BCI framework. This framework was put to
the test by running a traditional motor imagery-based BCI experiment and using the Single-
trial Matlab Toolbox to analyze the results. The results conclusively confirmed previous findings
and classification rates of up to 87% were found for simple, sensorimotor-based feature repre-
sentations. Furthermore, sophisticated feature selection algorithms were used to näıvely select
important channels and frequencies while classifying between left-hand and right-hand motor im-
agery. The selected channels correspond to the predicted neurophysiological areas and the selected
frequencies reconfirm previous studies showing the importance of sensorimotor rhythms.

After the success of the motor imagery experiment, a new experiment was proposed that mirrored
the experimental design but substituted two cognitive tasks, that of providing an inner-speech
command and that of transforming the position one’s body, in place of the previous motor imagery
tasks. Preliminary results show that these two cognitive tasks can in fact be well-distinguished
using a similar feature representation as was used in the motor imagery study with rates of up
to 67%. Furthermore, exploratory analysis provides evidence that these cognitive tasks are more
spatially distributed across the scalp and that the important frequencies for task distinction lie in
three clusters: a µ band around 9-13Hz, a βband around 21-30Hz, a γband around 45-55Hz, and
a high γ band around 85-95Hz. These findings provide a solid foundation for the exploration of
novel cognitive tasks for control in BCIs and for concurrent use of the BCI as a neuroscientific
research tool.



Appendix A

Further Analyses

A.1 Further Directions of Analysis

All-Frequency Approach: Individual Channel, All Frequencies

This is an alternative feature representation in the same spirit as the “All-Channel” representation.
The incoming preprocessed data is for one channel. Since we eventually wish to select features
at important frequencies, we replicate the signal for a single channel for numerous frequency
bands and separately compute a MEM spectral estimation for each desired frequency band. These
frequency bands can be arbitrarily defined and are generally 1Hz-wide bands. For instance, for a
single channel we separately compute the band power at 8Hz, 9Hz, 10Hz, etc. Now the ERD value
for each frequency band at this channel is computed as above. The resulting feature representation
is one ERD value per frequency band for a single channel. This third feature representation has
been left out of the results sections. Preliminary analyses from this “angle” showed the feature
selection algorithms to improperly function. It is hypothesized that using a single channel and
multiple frequencies is not in fact the way in which to derive automated features using SLPM.
Further investigation is needed.

Channel-Frequency Plots

One additional desired type of analysis was to build a two-dimensional portrait of the weight values
corresponding to a particular channel/frequency pair. This analysis was performed by wrapping
multiple classification runs around the two latter feature representations. More specifically, for
the “all-channel” representation a series of analyses were performed where each individual analysis
considered a frequency band of 1Hz for all 32 channels. The frequency of interest was then
augmented and analysis for all 32 channels was repeated. The feature weights for a single analysis
were normalized by dividing by the maximum value with respect to the current frequency and
were stored for later comparison. For the “all-frequency” representation, the inverse was done. A
series of analyses were performed with classification of an individual channel represented by 55
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Figure A.1: Two subjects’ frequency-channel plots for the motor imagery experiment. Results
show that channels at and around C23 and G16 are amongst the most important and have high
weight intensities for the expected sensorimotor rhythms.

MEM Model Order SLPM Regularization C

10-fold cross validation 3 10

Table A.1: Hyperparameter values for the k-fold cross validation schemes used in the motor imagery
and cognitive experiments.

different frequency bands. Weights for each of the frequencies at that channel were normalized by
the maximum weight for that run and the next channel was selected and likewise analyzed.

A pair of sample channel-frequency plots are provided in Figure A.1 for the motor imagery ex-
periment. Though it can be seen that the expected channels (C23 and G16 are the equivalent of
C3 and C4) have the highest weight intensities, the picture is a little muddied. Also, high weight
intensities above 30Hz do not make much analytical sense as we do not expect these areas to
be important in the distinguishing of the motor imagery tasks. Other channels have high weight
intensities as well and at unexpected frequency bands. For the most part the 9-13Hz and 21-25Hz
frequency bands also have high intensities attached to them. One way to potentially improve these
plots is to play with the SLPM sparsity parameter in hopes to supress unimportant weights which
find their way into being normalized to high values. This idea is proposed in Section 7.4.

A.2 Motor Imagery Experiment

Classification Scheme Parameters

Table A.1 displays all parameters used in the k-fold cross validation classification scheme. 10-fold
cross validation was performed by manual selection of parameter values.
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Sub 2 Sub 7 Sub 8 Best Subject Avg
LFD (Graz) 69% 64% 61% 65%

SLPM (Graz) 68% 62% 59% 63%
LFD (Channel) 60% 64% 56% 60%

SLPM (Channel) 87% 72% 76% 78%

Table A.2: Classification results for the motor imagery experiment taking the best 3 subjects using
two different feature representations. Results extracted from Tables 5.3,5.2, and2. Using the all-
channel feature representation and subject-specific frequency bands leads to average classification
error of 78% for the top three näıve subjects.

Classification and Automated Feature Selection Results for the Best 3
Subjects

As mentioned above in the discussion Section 7.2, displaying the top candidates for BCI use is a
common tactic in the BCI literature. These results are summarized in Table A.2which shows the
classification performance rates for the best 3 of 8 subjects. Note that other authors sometimes
select even 1 out of 4 (˜25%) of the “best” results for further investigation.

A.3 Cognitive Experiment

Full SLPM Classification Results

A detailed, full report of the classification performance for all 4Hz-wide frequency bands is pro-
vided in Table A.3. This shows clearly that important frequencies with respect to classification
performance fall within µ, β, and even γregions.

Classification and Automated Feature Selection Results for the Best 3
Subjects

Section 7.1 motivates the common practice of selecting the best BCI candidates for use in further
experimentation and for results. These results are summarized in Table A.4which shows the
classification performance rates for the best 2 of 6 subjects. Note that other authors sometimes
select even 1 out of 4 (˜25%) of the “best” results for further investigation.

A.4 Underlying Neurophysiology: Expectations for Auto-
mated Feature Selection

Though the details have been spelled out in the related research sections, here we briefly sum-
marize our expectations of the important channels and frequencies for the classification of the
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Frequency Band Sub 1 Sub 2 Sub 4 Sub 7 Sub 8 Sub 9 Subject Average
5-9Hz 52 63 57 53 53 60 56
9-13Hz 53 63 54 52 55 65 57
13-17Hz 55 61 54 51 54 66 57
17-21Hz 55 62 55 55 54 64 57
21-25Hz 53 63 58 53 56 63 58
25-29Hz 52 61 59 53 58 61 57
29-33Hz 51 56 58 53 60 61 56
33-37Hz 51 55 55 53 59 62 56
37-41Hz 51 55 53 53 59 62 56
41-45Hz 52 53 54 52 59 63 55
45-49Hz 52 53 53 52 59 66 56
49-53Hz 52 49 53 55 59 67 56
53-57Hz 52 48 50 54 60 64 55
57-61Hz 51 48 51 53 59 64 54
61-65Hz 51 47 53 53 59 64 55
79-83Hz 49 49 51 53 60 66 55
83-87Hz 51 50 52 53 60 67 55
87-91Hz 51 49 51 52 60 66 55
91-95Hz 50 54 53 50 59 66 55
95-99Hz 52 53 52 51 58 66 56

Table A.3: Per-subject SLPM classification results (in %) for the cognitive experiment between
5-100Hz for 4Hz-wide frequency bands using the “All-Channels” feature represntation. Subject
IDs refer to the same subject as used in the motor imagery study. Values in bold indicate the
frequency band at which the highest classification performance was obtained. Frequency bands in
which highest classification performance was achieved for some subject are additionally highlighted.

Sub 2 Sub 9 Best Subject Avg
LFD (Hand-crafted) 57 61 59

SLPM (Hand-crafted) 51 66 58
LFD (All-Channel) 62 58 60

SLPM (All-Channel) 63 67 65

Table A.4: Classification results (in %) for the cognitive experiment taking the best 2 subjects
of 6 using two different feature representations. Results extracted from Tables 6.3,1, andA.3.
Using the all-channel feature representation and subject-specific frequency bands leads to average
classification error of 65% for the top two näıve subjects.
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left-hand/right-hand motor imagery and the ISC/OBT tasks. The expectations for the cognitive
tasks are more poorly-founded and are more like guides than rules.

Motor Imagery Experiment

Channels
The channels on or around the motor cortex and the supplementary motor area (SMA). Particu-
larly, left-hand motor imagery should cause right-hemispheric activation around the “hand” area
of the motor homunculus and vice versa for right-hand motor imagery.

Frequencies
Frequencies centered around the sensorimotor rhythms. Particularly those in the 8-12Hz, 16-24Hz
and 36-40Hz regions.

Cognitive Experiment

Channels
For the inner-speech command (ISC) task we expect regions around Broca’s area (left-hemisphere
frontal insular gyrus) as well as a potential contralateral activation. Motor areas and SMA may
also be activated as thought of moving ones lips and vocal chords may cause motor imagery. For the
own-body transformation we expect channels on or around the right-hemispheric temporal-parietal
junction to be most important.

Frequencies
The important frequencies are less studied in these tasks. Cognitive tasks in general have shown
coherence in high γ bands, so these high-frequency bands may be of importance. If there is spillover
motor imagery the sensorimotor rhythms could also play an important role.



Appendix B

Implementation: The Singletrial
Matlab Toolbox

The Singletrial Matlab Toolbox is the BCI framework implemented in Matlab for the current
project. All data analyses and charts were produced using this toolbox. Great care was taken
while engineering the toolkit to be flexible for future additions of preprocessing, feature extraction,
task selection, classification, and plotting mechanisms. Detailed documentation, code, examples,
and scripts can be found on an accompanying CD.
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