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Abstract 

Humankind is in a state of rapidly accelerating technological advance, where once-distant future 
technologies have consistently become todayʼs reality. Paralleling these developments in 
machines and technology is an accelerated accumulation of knowledge driven by a boom in 
societal interest to understand the human brain, also motivated by scientific advances. Yet, as 
we progressively move toward technology-assisted tool use, tele-presence systems, medical 
robotics, and brain-machine interfaces aimed at the repair and augmentation of human cognitive 
and motor capacities, there is an increasing need to understand what happens when brain 
“merges” with machine. What are the subjective, perceptual, motor, and neural consequences of 
such a partnership? Can we use this knowledge to perhaps better understand enhancement, 
rehabilitation, and repair of neurological disability via neuroprosthetic devices? Here, I 
investigate these issues by providing converging evidence from a set of experiments designed 
to draw links between two previously independent research domains: the cognitive 
neuroscience of bodily self-consciousness and brain-machine interfaces. Through common 
motor imagery paradigms and with the aid of virtual reality, neuroimaging, and probabilistic 
modeling, in this thesis I explore the intersection of these two paths of contemporary fascination. 
 
Keywords: sense of agency; limb ownership; sensorimotor system; multisensory integration; 
motor imagery; Bayesian inference; psychophysics; brain-machine interface; virtual reality; 
electroencephalography  
 

 

Résumé 
L'humanité est poussée par lʼacceleration rapide des avancées technologiques où les 
technologies à venir, jadis éloignées, sont systématiquement devenues réalité. Parallèlement à 
ces développements technologiques se produit une accumulation accélérée des connaissances, 
poussée par une augmentation de intérêt sociétal pour la compréhension du cerveau humain—
elle aussi stimulée par des progrès scientifiques. Pourtant, alors que nous nous orientons 
progressivement vers une expansion des systèmes de télé-présence, de la robotique médicale, 
et des interfaces cerveau-machine destinées à la réparation et à l'augmentation des capacités 
cognitives et motrices de l'homme, le besoin de comprendre ce qui se passe quand le cerveau 
"fusionne" avec la machine se fait de plus en plus pressant. Quels sont les conséquences 
subjectives, perceptives, neurologiques, et motrices d'un tel mariage? Peut-on utiliser cette 
connaissance pour mieux comprendre l'amélioration, la réhabilitation et la réparation des 
maladies neurologiques par neuroprothèse? Jʼexamine ici ces questions en fournissant les 
preuves convergentes d'une série d'expériences destinées à lier deux domaines de recherche 
indépendants: les neurosciences cognitives de la conscience de soi et les interfaces cerveau-
machine. Avec des paradigmes communs dʼimagerie motrice et avec lʼaide de la réalité virtuelle, 
neuroimagerie, et modélisation probabiliste, dans cette thèse, jʼexplore l'intersection de ces 
deux voies de fascination contemporaine. 

 
Mot-clés: sens de lʼagentivité; incorporation de membres; système sensorimoteur; intégration 
multisensorielle; imagination motrice; inférence Bayesienne; psychophysique; interfaces 
cerveau-machine; réalité virtuelle;  électroencéphalographie.  
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The feeling that our body and its parts belong to us (sense of ownership) and the 

sensation of being the cause of our own actions (sense of agency) have been defined 

as two key components of bodily self-consciousness and experience. However, little is 

currently known about how body ownership and agency can be exploited in 

neuroprosthetics and whether principles from the cognitive neuroscience of body 

ownership and agency for bodily limbs and movements extend to those of machine-

controlled “bodies” and “movements”. Here, I ask two main research questions: (1) Can 

we contribute to the future design of ecological neuroprosthetic devices by embedding 

additional multisensory information giving rise to bodily ownership for these devices? 

and (2) Does our sense of agency for bodily movements extend to machine-controlled 

movements generated exclusively by thought? 

To address these questions, this thesis establishes a bi-directional link between 

the fields of cognitive neuroscience and brain-machine interfaces (BMIs). In 

particular, two concepts inspired by work from the cognitive neuroscience of bodily self-

consciousness, the sense of ownership (Section 1.1.1) and the sense of agency 

(Section 1.1.4), are investigated in the context of brain-machine interface paradigms 

(Section 1.3). I present empirical data gathered and analyzed with novel paradigms that 

combine techniques and methods from cognitive psychology, neuroimaging, 

computational neuroscience, psychophysics, haptics, virtual reality and non-

invasive BMIs. I will propose that technology-driven engineering approaches can be 

applied to basic research in cognitive neuroscience in order to gain new insights about 

the human brain and its functions, and that such evidence would be much more limited 

or impossible to obtain without such technology. Furthermore, I suggest a new approach 

to engineering BMIs that exploits the structure and function of the brain based on basic 
research from the cognitive neurosciences to better inform design of BMIs. 

This introduction sets the stage for the conceptual, methodological and theoretical 

concepts later discussed in the constituent scientific articles. First, an overview is 

provided of work from the cognitive neurosciences on body and limb representations 
in the brain, concentrating on the concepts of body parts ownership and agency. Next, 
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I provide a brief background on the human motor system and the associated 

behavioral and neural mechanisms behind covert and overt movement. Finally, I 

introduce the basics and state-of-the-art in brain-machine interfaces, highlighting 

their theoretical and practical potential. 

1.1 The scientific investigation of bodily self-consciousness 

The study of human self-consciousness is a multidisciplinary effort that has become a 

subject of great scientific interest in recent years (Gallagher, 2000; Christoff et al. 2011; 

Blanke & Metzinger, 2008). Until recently, approaches to the theoretical and empirical 

study of self-consciousness have focused on “higher-level” concepts of the self, such as 

autobiographical memory, language, self-recognition, and personality (Gillihan and 

Farah, 2005; Northoff et al., 2006, Legrand and Ruby, 2009). More recently, a 

complementary approach to investigate self-consciousness has emerged, concentrated 

rather on the study of “lower-level”, bodily mechanisms of the self, such as the 

integration and representation of multisensory information coming from somatosensory, 

proprioceptive, motor, visual and vestibular signals (Berlucchi and Aglioti, 1997, 2009; 

Botvinick, 2004; Damasio, 2000; Jeannerod, 2006, 2007; Vogeley and Fink, 2003). This 

approach focuses on the mechanisms behind representational encoding of the bodyʼs 

various multisensory and sensorimotor states, including sensory information from 

external sensors (exteroceptive; e.g. visual, tactile and auditory) as well as internal 

sensory input (interoceptive; e.g. visceral signals from internal organs; Damasio et al., 

2000; Craig, 2002; Critchley et al., 2004; Tsakiris et al., 2011). 
Systematic manipulation of such multisensory bodily mechanisms has recently 

been suggested as a potential complement to research efforts in neuroprosthetics and 

neurorehabilitation (Ehrsson et al., 2008; Marasco et al., 2011). In this thesis I explore

this possibility, concentrating upon the multisensory experience of human upper-

limbs and its relationship to neuroprosthetic feeling and control. Specifically, I explore 

the below-defined notions of ownership and agency in the context of brain-machine 

interface actions.  
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1.1.1 Body and limb ownership 

The experience that our body and its parts belong to us and not to others, so-called 

body ownership, has been identified as a key aspect of bodily self-consciousness (de 

Vignemont, 2010; Gallagher, 2000; Tsakiris 2010; Makin et al. 2008). Empirical studies 

of the multisensory mechanisms underpinning ownership of the body and its parts have 

emphasized the importance of integrating visual, tactile and proprioceptive signals 

(Botvinick, 2004; Botvinick and Cohen, 1998; Tsakiris and Haggard, 2005; Ehrsson et 

al., 2005). The most often-used paradigm to experimentally study ownership for upper 

limbs is the so-called rubber hand illusion (RHI; Figure 1). In this perceptual illusion, 

participants fixate on an artificial hand (visual cue) being stroked by a paintbrush in 

synchrony with stroking on their own corresponding and occluded hand (tactile cue) 

(Botvinick and Cohen, 1998). These visuo-tactile cues provided to the fake and real 

hands lead to an alteration in bodily experience, resulting in the feeling that the artificial 

hand is oneʼs own hand (as measured by subjective questionnaires). This feeling of 

illusory ownership is generally associated with a recalibration of the perceived position 

	
  
Figure 1: Manipulating upper-limb ownership: the Rubber Hand Illusion. Left: Applying visuo-
tactile stimulation to oneʼs real, occluded hand (grey box) at the same time and same location as on 
an artificial, visible limb (in front of the participant) leads to an emergence of illusory ownership for the 
artificial hand. Right: This illusory ownership is associated with the experience that the touch 
sensation originates at the artificial hand, that the artificial hand is oneʼs own hand, and is 
accompanied with a recalibration of perceived hand position toward the artificial hand as well as 
modulation of neural activity in bilateral fronto-parietal cortex. Illustration from (Botvinick, 2004). 
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of the participantʼs real hand, mislocalized toward the artificial hand. The illusion is 

disrupted if the visuo-tactile cues provided to the artificial and real hands are spatially or 

temporally incongruent, or when non-body control objects are used in place of an 

artificial hand (Botvinick & Cohen, 1998; Tsakiris & Haggard, 2005; for reviews see 

Makin et al., 2008; Blanke, 2012). 

1.1.2 Understanding ownership: Conceptual and computational models of 
multisensory integration 

Limb ownership is influenced by factors such as visuo-tactile stroke duration (Tsakiris & 

Haggard, 2005; Rohde et al., 2011), distance between proprioceptive and visual hand 

position (Lloyd, 2007), visual hand form (Tsakiris et al., 2009; Armel & Ramachandran, 

2003), laterality of stroking (Ocklenburg et al, 2010), visual hand posture (Costantini & 

Haggard, 2007) response modality (motor vs. verbal; Kammers et al., 2009), and even 

skin tone (Farmer et al., 2012). To explain these diverse findings in terms of the 

computational architecture underlying the emergence of illusory ownership and touch 

referral in the RHI paradigm, several conceptual models have been proposed (Makin et 

al., 2008; Tsakiris, 2010). Common to these models is the emphasis placed on the 

Figure 2: Conceptual models of limb ownership. These two models account for the illusory effects 
of the rubber hand illusion by describing functional comparisons between visual, proprioceptive, and 
tactile cues that are further mediated by internal models of the body and its posture. Left: From 
(Tsakiris, 2010). Right: From (Makin et al., 2008). 
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proper integration of visual, proprioceptive, and tactile cues as well as the 

requirement of an internal representation of body state (Figure 2). However, current 

conceptual models lack rigorous mathematical description and, to date, no empirical 
validation of the framework is provided.  

On the other hand, computational probabilistic inference models (employing 

Bayesian theory; review in Ernst and Bülthoff, 2004) have been successfully used to 

model a wide range of neural learning (Rezende et al., 2011; Steimer et al., 2009), 

sensorimotor (Körding and Wolpert, 2006), and perceptual phenomena (Yuille and 

Kersten, 2006; Stocker and Simoncelli, 2006; Deneve and Pouget, 2004). The starting 

premise behind these computational models is that the brain has a learned 

representation of some causal structure of the environment. Perceptual states are then 

generated by inference: given incoming multisensory information, the brain integrates 

these signals and infers their source in a probabilistic manner. The response of each 

sensory apparatus is generally assumed to be Gaussian, that is, it can be characterized 
by a mean response and a precision (variance). 

To better understand these models, consider the case where one is charged with 

the task of localizing another person in space. To begin with, assume that the brain has 

learned a simple causal model that seeing someoneʼs lips move (visual cue) is coupled 

with sound (auditory cue) stemming from the same location. This single source (the 

person) thus provides two sensory cues to the observer (Figure 3). Under a Bayesian 
multisensory integration model, the process of localizing the person is described as 

an inference made from the integration of the visual and auditory cues, where optimal 

localization is made by combining the sensory cues with preference toward the more 

precise sensory modality (Figure 3 left).  

These models therefore seem appropriate to apply to the trimodal sensory 

integration present during the RHI, yet in contrast to the above example, the RHI has 

the additional feature that the source of visual information may or may not arise 

from the subjectʼs own hand. Thus, any computational account of the RHI must allow 
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for sensory cues to originate from more than one source. Causal inference models are 

a more general class of statistical inference models that precisely allow for this case 

(Beierholm et al., 2008; Körding et al., 2007). To draw analogy to the previous example 

in sound localization, this may be that the persons lips are moving without accompanied 

sound but that a third party is producing the auditory signal (Figure 3). Ventriloquists 

often exploit this situation, inducing the perceptual illusion that visual and auditory cues 

stem from a single source (the dummy) when in fact they come from two independent 
sources (the ventriloquist and the dummy).  

Applying causal inference models in conjunction with Bayesian multisensory 

integration models to explain the illusory effects of the RHI thus represents a conceptual 

framework that allows for probabilistic multisensory integration to be tempered by the 

feeling of ownership over the body part. However, in contrast to current, purely 

conceptual models, this framework further permits one to understand illusory ownership 

in well-described mathematical terms whose theoretical predictions can be rigorously 

tested against empirical data. Furthermore, it allows for a precise definition of the set of 

	
  
Figure 3: Bayesian causal inference models. A Bayesian inference framework to describe object 
location in space. Left: Assuming perceived sensory cues (here visual and auditory) come from the 
same source and are each characterized by a mean (µV,µA) and some variance, optimal localization 
involves merging these sensory cues (posterior, µP), favoring the more precise modality (here visual). 
Illustration adapted from (Prsa et al., 2012). Right: Now visuo-auditory sensory cues may come from 
two sources (e.g. during ventriloquist performances). As in the single source case, object localization 
is still described using Bayesian multisensory integration of perceived sensory signals XV and XA, but 
now requires one to additionally make statistical inferences on whether there is a single (S) or plural 
(SA, SV) cause. Illustration from (Körding et al., 2007). 
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trimodal sensory configurations necessary to induce or abolish the feeling of limb 
ownership. 

1.1.3 Ownership: Neural mechanisms 

Over the past decade, several neuroimaging studies have begun to characterize the 

brain mechanisms of illusory hand ownership. By inducing illusory ownership of an 

artificial limb while measuring BOLD activity via fMRI, bilateral premotor and 

intraparietal cortices as well as the cerebellum (Ehrsson et al., 2004, 2005) were found 

to be associated with illusory hand ownership. Correlational evidence between the 

subjective experience of ownership (as measured by questionnaire scores) and BOLD 

activity modulation suggests further involvement by premotor cortex, cerebellum, 

bilateral anterior insular, and anterior cingulate cortices (Ehrsson et al., 2004, 2007). 

Employing a paradigm in which the artificial hand was approached by a threatening 

stimulus, additional fMRI studies have implicated the posterior parietal cortex (Lloyd et 

al., 2006), and supplementary motor area (Ehrsson et al., 2007). Further regions, 

including the right posterior insula, sensorimotor cortices (precentral and postcentral 

gyri), as well as primary somatosensory cortex, were reported to modulate as a function 

of illusory hand ownership in a PET study (Tsakiris et al., 2007). Moreover, clinical 

studies in stroke patients showed that an inability to experience illusory hand ownership 

was related to lesion location and damaged connections between premotor, frontal 

operculum, basal ganglia, parietal, and prefrontal cortices (Zeller et al., 2011).  

Complementing these findings about the functional and anatomical networks 

reflecting the experience of illusory ownership, several EEG studies have investigated 

the electrophysiology of illusory ownership. Using an evoked-potential design with 

somatosensory stimulation (SEPs via hand tapping) following induction of the RHI, it 

was shown that both the late and N140 components of the SEP are modulated by 

illusory hand ownership (Press et al., 2008). These electrophysiological modulations 

were observed over fronto-parietal regions, and likely reflected activation in 

sensorimotor regions. Relatedly, SEPs recorded over primary somatosensory cortex 
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under a different illusory hand ownership paradigm (numbness illusion) were shown to 

be modulated by the strength of illusory ownership (Dieguez et al., 2009). Finally, in a 

RHI-like paradigm, an increase in inter-electrode synchrony in the lower gamma-band 

(30–50 Hz) over parietal scalp regions was reported during the integration of tactile and 

visual cues in peripersonal space (Kanayama et al. 2007, 2009). 

In summary, this wide-ranging network of brain regions associated with illusory 

hand ownership during the RHI include the intraparietal cortex, primary 
somatosensory cortex (precentral and postcentral gyri), the ventral premotor 
cortex, the right insular lobe, the anterior cingulate cortex, and the cerebellum 

(Ehrsson et al., 2004, 2005, 2007; Tsakiris et al., 2007; Lloyd et al., 2006; Zeller et al., 

2011). Several regions, including premotor and parietal cortices were additionally 

shown to be associated with electrophysiological modulation of SEPs and gamma-band 

oscillations.  

 
1.1.4 The sense of agency 

 Alongside body ownership, the sense of agency (SOA), or the experience of being the 

causal author of oneʼs own actions, has been targeted as one of the core aspects to 

phenomenal experience of bodily self-consciousness (David et al., 2008, Newen and 

Vogeley, 2003; Gallagher, 2000). Pioneering work in the study of self-awareness, self-

identification, and the sense of agency dates back to the 1960s (e.g. Nielson, 1963), but 

with implications for dysfunctional action attribution in neuropsychiatric disorders such 

as schizophrenia (Frith et al., 2000; Blakemore et al., 2002), the perceptual and 

temporal coupling of actions to their effects (Haggard et al., 2002) and volitional and 

intentional causation systems (Jeannerod, 2006; Haggard, 2008; Wegner, 2002; Marcel, 

2003), the study of SOA has recently witnessed a renaissance of scientific and 
philosophical interest (Pacherie, 2008; Gallagher, 2000; Metzinger, 2003). 
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Several theoretical accounts have been put forth to explain a diverse set of empirical 

findings on SOA for bodily actions. Extending earlier proposals based on oculomotor 

control (von Holst and Mittelstaed, 1950; Sperry, 1950), Wolpert and colleagues 

proposed more recently the distinction of self-produced versus externally produced 

actions might be related to systems underlying sensorimotor comparison in motor 

control (Wolpert et al., 1995; Frith, 1987; Blakemore and Frith, 2003; Frith et al., 2000; 

Figure 4). This prominent sensorimotor comparator model (or central monitoring 
hypothesis) thus holds that perturbations of SOA are due to sensorimotor 

discrepancies in the predicted (efferent) and actual (re-afferent) sensory 

consequences of our movements (Blakemore et al, 2002; David et al., 2008). This 

model is supported by a number of empirical studies that experimentally inject temporal 

and spatial conflicts between movements and their sensory consequences, 

demonstrating that our experience of being the agent of our actions is malleable and 

dependent upon spatial and temporal coherence of actions and their effects (Daprati et 

Figure 4: Predictive models of the motor system. The most prominent conceptual model to explain 
the disturbances in the sense of agency to bodily actions is inspired by models of motor control. These 
predictive accounts hold that discrepancies between predicted and actual sensory feedback lead to 
disturbed sense of agency (from Schubotz, 2007). 
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al., 1997; Fourneret and Jeannerod, 1998; Farrer et al., 2003; Sato and Yasuda, 2005; 
Sato, 2009; Figure 5).  

Despite its compelling and parsimonious account on the origin of SOA disturbance, 

the sensorimotor comparator model lacks explanatory power for the important and 

everyday case where SOA is attributed to action representations that are formed but no 

movement is executed and no re-afferent sensory feedback is present (e.g. thoughts, 

action observation, or motor imagery; Jeannerod, 2007; Georgieff and Jeannerod, 1998; 

Jeannerod, 2006; Campbell, 1999). Furthermore, SOA over joint actions in human 

dyads cannot be accounted for by such an account, as efferent motor signals could 

have originated from either person in the pair (van der Wel, 2012). Given these deficits, 

recent multifactorial predictive internal models have been proposed to allow for 

comparisons between action predictions and consequences to occur at both 

sensorimotor and perceptual levels (Pacherie, 2008; Knoblich and Repp, 2009; Moore 

et al., 2009). This hierarchical comparator model posits that a conglomeration of 

Figure 5: Classical experimental paradigms to introduce sensorimotor conflicts and 
manipulate the sense of agency over bodily movements. By inserting deviations between bodily 
actions and their sensory consequences, various experimental setups have been used to show our 
sense of agency to be dependent on spatial and temporal coherence between action and effect. To 
introduce spatial conflicts, participants were asked to draw a straight line to an end point while their 
hand was occluded from vision. Left: The experimenter manually perturbed the line participants saw 
using a fold away mirror (from Nielson, 1963). Middle: Using a tablet and stylus, the line was digitally 
perturbed (from Fourneret and Jeannerod, 1998). Right: An example of visuo-motor temporal delay. 
Participants press a key and see a flash on a screen that is either temporally coherent with (top) or 
perturbed with a temporal delay (bottom) (adapted from Stetson et al., 2006). 

11



COGNITIVE NEUROPROSTHETICS: BODY OWNERSHIP AND AGENCY FOR BRAIN-MACHINE ACTIONS 
 

	
  

motor, perceptual, and distal cognitive factors all influence SOA.  

By contrast, the theory of apparent mental causation (Wegner, 2002) considers 

SOA to be dependent on three factors: first, the environmental settings must be such 

that action consequences can be interpreted without a potential alternative cause 

(exclusivity); second, the action must be consistent with prior intentions (consistency); 

and third, that oneʼs thought or intention must temporally precede the action (priority). 

According to this theory, if these three criteria are met, a postdictive attribution of 

(illusory) will is assigned to the action. Support for this theory comes from a series of 

experiments that manipulate these three principles and measure oneʼs illusory will 

(Wegner et al., 2004; Wegner and Wheatley, 1999; Wegner, Fuller, & Sparrow, 2003). It 

is worth noting that the hierarchical multifactorial comparator model also attempts to 

assimilate these findings, allowing for predictions to be made at the perceptual or 
cognitive levels. 

 
1.2 Mental imagery 

Mental imagery is a process in which internal representations of perceptual information 

are accessed through “the mindʼs eye”. As with thoughts, these internal and subjective 

processes are not necessarily coupled with direct overt behavior and have thus been 

difficult to investigate scientifically. Initial experiments that asked participants to 

compare a rotated object to the same object in its canonical orientation (unrotated) 

found that response times to whether the two objects were the same depended on the 

angle of rotation between the two objects (Shepard and Metzler, 1971). Using such 

implicit measurements of imagery from experimental psychology in combination with 

modern techniques in neuroimaging, researchers have begun to characterize the neural 

mechanisms behind mental imagery (Kosslyn et al., 2001; Zacks, 2008; Decety et al., 
1989).  

Research on mental imagery has been further categorized into work on visual 

(Farah, 1984; Kosslyn et al., 1997), auditory (Halpern and Zatorre, 1999), and motor 

imagery (Jeannerod, 1995; Jeannerod and Frak, 1999; Decety et al., 1994) (for other 
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forms of mental imagery and for review see Kosslyn et al., 2001; Pylyshyn, 2003). 

Throughout this thesis, I employ mental imagery paradigms in the motor context. As 

our motor system is responsible for nearly all of our ability to communicate and interact 

with the world, the cortex has a vast and consistent neural architecture dedicated to 

motor planning and motor output. These prevalent motor representations have been 

extensively studied in the context of motor imagery, where the behavioral and neural 

consequences have been progressively revealed (Section 1.2.1). In addition, motor 

system engagement through motor imagery is of clinical relevance as it has been 

shown to improve actual motor performance (Driskell et al. 1994; Gentili et al. 2006) and 

is utilized as a neurorehabilitation technique for motor disorders (de Vries and Mulder, 

2007; Stevens et al., 2003). Finally, as we explore in Section 1.3.2, the reliability of 

electrophysiological responses to motor imagery has led to decoding of these signals for 
brain-machine interfaces (Pfurtscheller et al., 1997).  

 

1.2.1 Motor imagery: Behavioral and neural mechanisms 

Inspired by the visual object rotation task of Shepard and Metzler described above, a 

similar task was designed to probe imagery in the motor context. In this task, 

participants were shown rotated left or right hands and asked to report whether the 

image was of a left or right hand (Parsons, 1987). Again, response times were found to 

depend on the orientation angle of the target hand. However, in contrast to the neutral 

object rotation visual imagery task, response times were influenced by the 

biomechanical constraints of the arm trajectory that one would have had to follow in 

order to match the reference hand posture (Parsons, 1994). These experiments were 

further extended with evidence that response times for judging the feasibility of grasping 

a rotated object correspond to the time it takes to physically grasp such an object (Frak 

et al., 2001). Taken together, these findings suggest that the subjects internally 

simulate actions to match their own body parts to the external, reference stimuli and 

thus represent implicit behavioral measures of the internal process of motor imagery (for 

a review see Jeannerod and Frak, 1999). 
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Converging evidence from multiple lines of research has demonstrated distinct, yet 

partially overlapping brain networks involved during motor observation, execution, 

and imagery (Slachevsky et al., 2001; Grezes and Decety, 2001; Rizzolatti et al.; 1996; 

Caldara et al., 2004; for reviews, see Fadiga and Craighero, 2004; Decety, 1996). The 

most frequently reported neural structures associated with these shared motor 

representations include premotor, supplementary motor, primary motor, cingulate 
and posterior parietal regions using fMRI (Porro et al. 1996, 2002; Lotze et al. 1999, 

2003; Gerardin et al. 2000; Naito et al. 2002; Kuhtz-Buschbeck et al. 2003; Dechent et 

al. 2004; Meister et al. 2004; Roth et al. 1996; Ross et al. 2003; meta-analysis in 

McNorgan, 2012) and PET (Krams et al. 1998; Jackson et al. 2003). However, it is still 

debated whether a common system of motor representation underlies motor 

observation, execution and imagery, and several recent studies characterized the 

shared and dissociable neural signatures using fMRI (Macuga & Frey, 2011) and human 

intercranial electrophysiology (Miller et al., 2010). 

Concerning the electrophysiology of motor imagery, earlier work measuring 

local field potentials in the primary motor cortex of monkeys reported spiking activity to 

encode yet-to-be-made movement trajectories, presumably reflecting an imagery 

process related to planned motor movements (Georgopoulos et al., 1988). In human 

premotor, motor, and somatosensory cortices, motor inhibition, execution and 

observation, as well as other sensorimotor tasks have been to modulation of the neural 

oscillations in the mu rhythm (8 – 13 Hz oscillations) (Pineda, 2005; Niedermeyer, 

1993; Gastaut, 1952; Howe and Sterman, 1972). Both intracranial electrophysiology 

(Gastaut & Bert, 1954; Mukamel et al., 2010; Tremblay et al., 2004) and surface EEG 

(Cochin et al., 1998, 1999) consistently show comparable mu rhythm suppression 

during both the execution and the observation of different movements. Moreover, the 

mu rhythm is also modulated by touch (Pfurtscheller, 1981) and the observation of 

touch of another person (Cheyne et al., 2003). Recent evidence from fMRI-EEG studies 

have shown the mu-rhythm to covary with the BOLD signal in dorsal premotor, inferior 

parietal, and primary somatosensory cortices during both action execution and 

observation (Arnstein et al., 2011), and with the beta-rhythm (14 – 30 Hz) as well as 
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the BOLD signal in sensorimotor regions during motor imagery. Mu- and beta- 

oscillations have also been investigated with respect to imagined unilateral upper 

limb movements (Neuper et al., 2006) and have been linked to mu- and beta- 
suppression in parietal cortex (Pfurtscheller et al., 1997a) and premotor and primary 
sensorimotor areas (Pfurtscheller & Neuper, 1997b; Pfurtscheller et al., 1997c). Finally, 

gamma-band activity (above 30 Hz) has also been linked to lateralized effects of motor 

imagery (Pfurtscheller and Neuper, 2002; Miller et al., 2010; for a review see Hari and 

Salmelin, 1997).  
 

1.3 Brain-machine interfaces 

Brain-machine interfaces (BMIs) use advanced signal processing and machine 

learning techniques combined with a contemporary neuroanatomical and 

neurophysiological understanding of brain processing in order to extract and decode 

user intent in real-time from ongoing brain activity (Nicolelis, 2003; Lebedev and 

Nicolelis, 2006). BMIs form a bi-directional communication channel between brain 

and machine in which users relay commands in the form of brain activity patterns to 

software that recognizes and translates brain signals into a corresponding action. In turn, 

the brain-machine loop is closed as the outcome of oneʼs translated brain signal is fed 

back to the user as sensory input (e.g. visual, tactile, or auditory), permitting one to 

adjust the coupling between brain and machine (Figure 6). BMIs have demonstrated 

potential towards the restoration of upper limb functions in non-human primates (Velliste 

et al., 2008; Carmena et al., 2003; Chapin et al., 1999; Moritz et al., 2008; Serruya et al., 

2002) and humans (Hochberg et al., 2006, 2012) and have been used as a new 

communication channel for those with severe motor disabilities including paralysis 

(Birbaumer et al., 1999).  

 

1.3.1   The fundamental elements of a BMI 
All brain-machine interfaces can be decomposed into a shared chain of processing 

steps. Below, I provide a brief overview of each of the steps involved in this framework 
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as further detail can be obtained from other in-depth reviews (Nicolelis, 2003; Lebedev 

and Nicolelis, 2006; Schwartz et al., 2006; Kübler et al., 2001; Wolpaw et al., 2002; 

Millan et al., 2010; Birbaumer, 2006).  
 To begin, brain signals are acquired using non-invasive (e.g. fMRI, scalp EEG, 

NIRS, PET, MEG) or invasive (intracranial, subdural ECoG or intracellular EEG) 

neuroimaging acquisition techniques. The choice of acquisition source determines the 

experimental design, the types of control signals that can be extracted, and who the end 

users of the system are (healthy subjects or a targeted clinical group). Next, acquired 

	
  
Figure 6: A closed loop brain-machine interface. This schematic represents a brain-machine 
interface in the context of a motor neuroprosthetic device. Motor signals are decoded in real-time from 
the cortex using advanced signal processing techniques. Thus, motor intent is converted into a 3D 
arm trajectory that updates a robotic actuator to move accordingly. Importantly, to close the control 
loop, sensory cues (e.g. visual, tactile, proprioceptive) must be fed back to the user either via external 
or direct brain stimulation. This thesis makes the claim that as we advance toward everyday use of 
such technologies, brain-machine actions will become progressively more important in clinical, 
societal, and legal contexts, but will also inform basic research in the neurosciences (see Section 4.5). 
Illustration from (Nicolelis, 2001). 
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signals are preprocessed to remove any non-neural artifacts and to shape the data 

into compact representations called features. Feature extraction represents a critical 

step in any BMI system, as eventual decoding performance depends on robust and 

reliable features that accurately account for mental intent. After creating feature 

representations of the neural signals, mathematical models (classifiers) are trained to 

categorize future features into learned classes of feature patterns. Next, predictions 

from the classifier output are transferred into controlling software (e.g. a spelling 

application) or hardware (e.g. a robotic prosthesis) applications. The output from this 

application is provided as sensory feedback to the BMI user so that future modulation 

of brain signals can be adjusted to optimize the brain-machine coupling.  

1.3.2    BMI control signals and motor imagery-based BMIs 

Various control signals have been used in BMIs (for reviews see Wolpaw et al, 2002; 

Andersen et al., 2004), including synaptic and extracellular field potentials 

(Georgopoulos et al., 1988; Carmena et al. 2003; Nicolelis 2001), local field potentials at 

the surface of the cortex (Miller et al., 2010), hemodynamic modulation of the BOLD 

response (Hinterberger et al., 2004; Weiskopf et al; 2003), NIRS (Sitarem et al., 2009; 

Coyle et al., 2004), surface EEG-based sensorimotor rhythms (Pfurtscheller et al. 2006; 

Wolpaw et al. 2002), and event-related potentials such as steady-state visual evoked 

potentials (Wang et al., 2008), P300 responses (Guger et al., 2009), and error potentials 
(Buttfield et al., 2006; Ferrez and Millan, 2008). 

Since voluntary modulation of sensorimotor rhythms (e.g. central mu- and 
beta- rhythms; Niedermeyer, 2005) can be measured in a non-invasive manner, they 

have been used and studied extensively as control signals for non-invasive BMIs 

(Pfurtscheller et al., 1997a; Pfurtscheller et al., 2006; Neuper et al., 2009; Pfurtscheller 

and Neuper, 2001). Patients with motor disabilities such as paralysis due to stroke or 

spinal cord injury are able to modulate sensorimotor rhythms via motor imagery (Buch et 

al., 2008; for a review see Birbaumer et al., 2008). Moreover, motor imagery has also 
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been used to detect willful modulation of brain activity for those with disorders of 
consciousness (Owen et al., 2006).  

In summary, motor imagery leads to reliable neural modulations (Section 1.2.1) 

that reflect internal motor representations while circumventing the descending pathways 

regulating the musculoskeletal system. For these reasons, motor imagery paradigms 
are used throughout the work in this thesis as a liaison between cognitive 
neuroscience and brain-machine interfaces. 

 
1.3.3 Multimodal sensory feedback in BMIs 

Human cognition and perception is largely shaped by multisensory experience 

(Ghazanfar and Schroeder, 2006) and as discussed in Section 1.1.1, the confluence of 

proprioceptive, visual, and tactile sensory information is crucial to the feeling of 

ownership over limbs. Moreover, normal motor control depends on multimodal body 

state estimates (van Beers et al., 1999; Sober and Sabes, 2005) and motor control 

guided purely by vision is slow and demands more attention than in multimodal 

situations (Ghez et al., 1995). Important limitations in current BMI systems, such as 

severely diminished quality and accuracy of motor control as compared to healthy 

controls (Hochberg et al., 2006), has been linked to a current lack of multisensory 

feedback in these devices (Birbaumer et al., 1999; Abbott, 2006; Hatsopoulos and 

Donoghue, 2009). Thus, one potential avenue for improvement of control and sensation 

over neuroprosthetic and BMI-controlled devices could be to augment these devices 
with mechanisms to provide coherent multisensory feedback (Nicolelis, 2003). 

Several recent studies have demonstrated successful integration of multimodal 

sensory feedback into invasive BMIs as tested in monkeys. After being trained to control 

a virtual arm with voluntary modulation of activity in primary motor cortex, monkeys were 

provided direct electrical stimulation to primary somatosensory cortex to simulate 

artificial touch sensation for objects that the virtual arm encountered (OʼDoherty et al., 

2011). Importantly, when performing an active exploration task with a virtual arm 

combined with artificial touch sensation, monkeys behaved similarly to how they would 
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with their actual limbs. This was taken as evidence that the multisensory nature of the 

BMI led to embodiment of the virtual limb. In a similar paradigm, monkeys were trained 

to control a visual cursor with motor cortex activity while their arm was passively 

displaced to follow the cursor trajectory (Suminski et al., 2010). Contrasting BMI control 

while receiving pure-visual feedback against a condition where visuo-proprioceptive 

feedback was provided, the authors demonstrated that BMI performance was enhanced 

by multimodal feedback. They further showed that the spatial congruence between the 

sensory modalities was important to the performance improvements. Collectively, these 

studies show the potential of providing additional, complementary sensory information in 
BMIs. 

Though most non-invasive BMIs exclusively provide unimodal visual feedback, 

some research has addressed sensory feedback substitution, replacing the visual 

modality with auditory (Furdea et al., 2009; Hinterberger et al., 2004; Nijboer et al., 

2008), vibrotactile (Chatterjee et al, 2007; Brouwer and van Erp, 2010; Cincotti et al., 

2007) or proprioceptive (Gomez-Rodriguez et al., 2010) sensory feedback. On the other 

hand, multimodal, non-invasive BMI systems remain relatively unexplored (Wagner et 

al., 2012). Several studies have investigated combined visuo-auditory feedback, 

reporting a multimodal enhancement of BMI performance in P300 paradigms (Belitski et 

al, 2011; Klobassa et al, 2009), but a decrease in performance for multimodal versus 

unimodal regulation of slow cortical potentials (Hinterberger et al., 2004). Finally, recent 

work has shown that providing visuo-proprioceptive feedback to the hand via a robotic 

exoskeleton can improve BMI performance (Ramos-Murguialday et al., 2012). 

Importantly, this multimodal feedback led to motor learning effects, suggesting that 

multimodal feedback can additionally help in BMI skill acquisition. In this thesis, I 

expand upon these first investigations, exploring the effects of decoding motor imagery 

in non-invasive BMIs while inducing illusory ownership over artificial hands with 

multimodal visuo-tactile feedback. 
	
  

 

19



COGNITIVE NEUROPROSTHETICS: BODY OWNERSHIP AND AGENCY FOR BRAIN-MACHINE ACTIONS 
 

	
  

 

 

 

 

 

 

 

 
 

 
 

2. Overview and Results 
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The aim of this chapter is to provide a brief overview of the main motivations, methods 

and findings for the scientific articles collected in Section 3. In addition to these articles, 

this thesis contains results for ongoing work on the sense of agency that will be 
presented in the discussion (Evans et al., in preparation; Section 4.2). 

2.1   Personal Contributions 

I was involved in all stages of the experimental studies presented in this thesis. To be 

more specific, below I outline my individual contribution to each of the included scientific 

articles. 

1. Evans, N., Blanke, O. Shared electrophysiology mechanisms of body ownership and
motor imagery. (2013) NeuroImage. vol. 64 pp. 1-13 

Personal contribution: design, implementation, recording, analysis, writing 

2. Evans, N., Blanke, O. Illusory hand ownership alters decoding performance in a
motor imagery based brain-machine interface. (in preparation) 

Personal contribution: design, implementation, recording, analysis, writing 

3. Rezende, DJ., Evans, N., Gerstner, W., Blanke, O. Computational embodiment of a
virtual limb. (submitted). 

Personal contribution: design, implementation, recording, analysis (experiment 2), 
writing 

4. Evans, N., Gale, S., Blanke, O. The psychology of machine-controlled actions.
(submitted).  

Personal contribution: design, implementation, recording, analysis, writing 
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2.2   Studies on body ownership and brain-machine interfaces 

2.2.1   Study 1: The electrophysiology of hand ownership and its relation to motor 
imagery of hands 
 

Though several neuroimaging studies on body parts ownership have begun to reveal 

the multisensory brain networks underlying illusory ownership, the electrophysiology of 

illusory ownership remains relatively unstudied. Moreover, the networks associated with 

hand ownership displayed spatial similarities with the regions activated during motor 

imagery of hands. Thus, we designed a virtual reality environment with automatized, 

machine-controlled visuo-tactile stimulation to induce changes in illusory hand 

ownership while recording 64-channel EEG. Using this setup, we first analyzed cortical 

oscillations and their neural generators reflecting changes in illusory body ownership. 

Next, we investigated - in the same subjects - brain oscillations and their neural 

generators during a unilateral hand motor imagery paradigm and directly compared 

ownership-related brain activations to oscillations present during motor imagery.  
 

Methods 

Participants were seated at a table with their arms resting (palms up) on their legs while 

a head-mounted display projected two virtual arms (or non-body objects) extending from 

the participantsʼ body above their real arms (Figure 7). For the illusory ownership 

experiment, participants passively received machine-programmed visuo-tactile 

stimulation (haptic vibratory motors and virtual visual stimuli), in one of four 

experimental conditions (synchronous or asynchronous visuo-tactile stimulation on 

bodily or non-body control objects). We measured illusory ownership with subjective 

questionnaires and looked for selective changes in electrical brain activity that reflected 

such ownership. Our spectral and statistical EEG analyses involved looking for 

modulations in frequency power across experimental conditions at the single electrode, 

cluster, and source generator levels. 
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 In a second experiment with the same subject sample, participants saw the same 

visual virtual scene while performing a lateralized motor imagery task (imagined left or 

right hand clasping). We performed the same EEG analysis as in the first experiment in 

order to directly contrast results between the two studies. Finally, we performed an 

overlap analysis at the scalp and voxel (inverse solution) levels, comparing the spectral 

features and anatomical regions associated with illusory ownership and motor imagery. 

 

Main Results 

We first showed that illusory ownership could be induced using our novel, automated 

setup combining haptic stimulation and stereoscopic virtual visual stimuli. Statistical 

analysis on subjective reports indicated that only the synchronous, body stroking 

	
  
Figure 7: A fully automated setup to induce illusory ownership over virtual arms. A) 
Participants were stimulated on their hands via eight, programmed haptic motors while they saw a 
immersive virtual scene of two B) virtual arms or C) virtual non-body control objects projected in 
stereo. Visuo-tactile stimuli could be applied to the real and virtual hands with millisecond precision 
and was used to induce illusory ownership over the virtual hands.  
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condition (henceforth referred to as illusion condition) significantly differed from all other 
conditions on the questionnaire item concerning illusory ownership. 

EEG analysis at the single electrode level (electrodes C3 and C4 located over left 

and right sensorimotor hand regions, respectively) showed a body-selective, stroking-

dependent modulation in mu-band power. Specifically, at electrode C4 a significant 

difference in mu-band power was found between the illusion condition and 

asynchronous stroking on the bodily visual objects. No such difference was found for 

the control objects. Electrode cluster analysis revealed two clusters of electrodes that 

differed from the baseline condition across the experimental conditions. These clusters 

were located over bilateral fronto-parietal regions, primarily centered over hand regions 

and again showed selective mu-band modulations in the illusion condition (pre-

dominantly in the right cluster; Figure 8 left). Finally, we computed an inverse solution 

for the illusion condition and found the observed mu-band suppression associated with 

illusory ownership to be localized to left and right fronto-parietal, sensorimotor regions 
(Brodmann areas 4/6; Figure 8 right). 

	
  
Figure 8: Illusory ownership is associated with selective modulation of mu-band power over 
fronto-parietal regions. Left: Mu-band log power ratios for the four experimental conditions in two 
sensorimotor electrode clusters. Only the illusion condition (dark red) led to differential modulation, 
and reflected subjective illusory ownership scores (not shown). Right: Inverse solution of the illusion 
condition showed mu-band suppression to be localized to bilateral sensorimotor cortex.  
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Analysis on the EEG data collected during lateralized motor imagery showed 

classical electrophysiological changes over sensorimotor cortex. In particular, mu- and 

beta-band activity was found to be contralaterally suppressed and ipsilaterally enhanced 

with respect to the imagined hand movement. This pattern of activity was confirmed with 

the same chain of analysis as used in the illusory ownership experiment (single 
electrode, cluster, and inverse solution).  

Finally, we contrasted mu-band peak activity, scalp electrode, and voxel overlap 

across the two studies and demonstrated strong anatomical and spectral overlap 

between the electrophysiological mechanisms underlying illusory ownership and motor 
imagery (Figure 9). 

 

 

 

  

	
  
Figure 9: Illusory ownership and motor imagery show strong spectral and spatial overlap in 
fronto-parietal regions. Two electrophysiological studies showed that motor imagery for hands and 
illusory ownership over hands lead to similar spectral modulation in the mu-band over bilateral (though 
right-predominant) fronto-parietal regions. 
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2.2.2   Study 2: Inducing ownership over hands to alter single-trial decoding of 
motor imagery  

Despite recent encouraging advances in providing multimodal feedback to monkeys for 

motor control of invasive BMIs (OʼDoherty et al., 2011; Suminski et al., 2010), 

multimodal, non-invasive BMI systems remain relatively unexplored (Wagner et al., 

2012). Our results from Study 1 hinted at the potential for improvement of non-invasive 

BMIs by manipulation of body ownership. Thus, to extend our work from Study 1 and 

test if we could directly exploit our neuroscientific findings on the link between illusory 

ownership and motor imagery, we applied our illusory ownership paradigm to a BMI 
motor imagery task.  

 

Methods 

We induced illusory ownership over two virtual hands by providing coherent visuo-tactile 

stimulation to the real and virtual hands while recording 64-channel 

electroencephalography (Figure 7) in the same participants as in Study 1 (in a different 

session). While receiving this constant and bilateral stimulation on both hands, 

participants performed a unilateral motor imagery task, imagining to clasp their left or 

right hand. Participants also performed the motor imagery task in experimental 

conditions where visuo-tactile stimulation was applied asynchronously and on non-body 

objects. Two additional baseline conditions were measured where participants 

performed motor imagery in the absence of visuo-tactile stimulation or with only tactile 

stimulation (no corresponding visual stroke). To assess the influence of illusory 

ownership on BMI classification performance, we first performed an offline, single-trial 

decoding analysis of the imagined hand (left vs. right) in each of the experimental 

conditions from Study 1. Next, we measured the electrophysiological effects of 

performing unilateral motor imagery while experiencing illusory ownership for two virtual 

hands. To do so, we contrasted mu-band power from data during passive visuo-tactile 

stimulation (Study 1) against spectral power in the same conditions during motor 
imagery. 
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Main Results 

Our decoding analysis showed that illusory ownership led the highest classification 

performance of all visuo-tactile experimental conditions (asynchronous stroking on body 

objects, stroking on control objects; Figure 10). Of note, classification performance was 

found to significantly increase in the illusion condition versus asynchronous stroking on 

non-body objects. Importantly, statistical feature 

selection methods used in the decoding analysis 

independently verified that electrodes over the same 

bilateral sensorimotor hand regions implicated in 

Study 1 were most important in distinguishing 

between left and right imagery trials during motor 

imagery. However, classification performance was 

found to be highest when participants performed 

motor imagery in the absence of visuo-tactile 

stimulation and the addition of tactile stimulation 

significantly reduced performance. Frequency 

analysis revealed that the addition of motor imagery 

to each of the four visuo-tactile stimulation 

conditions (from Study 1) led to substantial changes 

in mu-band oscillations in all conditions except for 

the illusion condition. Namely, mu-band log power 

ratios were found to move toward the baseline 

condition in all experimental conditions except in the 
illusion condition.  

Though these results support the hypothesis 

that the mu-band power may be an invariant 

measure of illusory ownership useful to alter non-

	
  
Figure 10: Illusory ownership 
alters single-trial decoding 
performance in a non-invasive 
BMI. Decoding performance 
(average over 10-fold cross 
validation) for a binary classification 
of left vs. right hand motor imagery. 
While performing motor imagery, 
participants receive task-irrelevant 
visuo-tactile stimulation on their real 
hands (and their virtual 
counterparts). The visuo-tactile 
stimulation during the illusion 
condition (dark red) led to a boost in 
decoding performance over 
asynchronous stroking on non-body 
objects (light blue), yet best 
performance was found for trials 
where no visuo-tactile stimulation 
was applied (black). 
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invasive BMI performance, we are in the process of finishing a more in-depth analysis. 

In this ongoing work we discuss our results in the context of the search for reliable, 
online neural measures that reflect illusory ownership.  

 

2.2.3   Study 3: Computationally modeling body ownership 

In a diverse set of experiments employing different experimental paradigms, hand 

ownership as studied in the RHI has been reported to be sensitive to a wide variety of 

parameters including visuo-tactile stroke duration (Tsakiris & Haggard, 2005; Rohde et 

al., 2011), distance between proprioceptive and visual hand position (Lloyd, 2007), 

visual hand form (Tsakiris et al., 2009; Armel and Ramachandran, 2003), laterality of 

stroking (Ocklenburg et al, 2010), visual hand posture (Constantini & Haggard, 2007) 

response modality (motor vs. verbal; Kammers et al., 2009), and even skin tone 

(Farmer et al., 2012). Despite this wealth of literature describing a wide variety of 

behavioral effects and conditions under which the RHI is enhanced or breaks down, 

only a few conceptual frameworks have been put forth to comprehensively explain the 

computational mechanisms behind the emergence of illusory ownership (Makin et al., 

2008; Tsakiris, 2010). Given the success of inducing illusory ownership with our 

automated setup (2.2.1), we sought to exploit the primary advantage of our 

programmable setup: systematic control of sensory input during the RHI. In an empirical 

study, we manipulated visual, tactile, and proprioceptive cues over a large range of 

values and in a large number of experimental trials in order to explore the input-output 

relationship between multisensory cues and the recalibration of perceived hand position 

(proprioceptive drift) associated with the RHI. We then designed a computational, 

causal inference model to describe the illusory effects of the RHI in terms of Bayesian 

multisensory integration. Our model, which considers hand ownership as a probabilistic 

regulator upon how incoming multisensory cues are integrated, closely accounts for our 

empirical data and thus demonstrates the potential of inducing illusory hand ownership 
in terms of systematic and probabilistic “lower-level” multisensory manipulations.  
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Methods 

We used an automated haptics and virtual reality setup similar to that employed in 

Section 2.2.1 in order to induce the RHI. In a first study, we verified our setup to induce 

the RHI by providing unilateral, synchronous vibrotactile stimulation on the participantʼs 

right hand while they saw a virtual right hand being stroked. We manipulated the 

posture of the virtual hand (congruent to the body posture or rotated by 90 degrees) as 

well as the synchrony of stroking (synchronous or asynchronous) and measured illusory 

ownership via subjective reports. In a second study, participants received visuo-tactile 

stimulation on the artificial and real hands for a variable amount of stroking time after 

which they were asked to estimate the position of their real hand (perceived hand 

position). On a trial-by-trial basis, we manipulated the separation between the visual and 

proprioceptive hand positions (visuo-proprioceptive separation), the synchrony of visuo-

tactile stroking on the virtual and real hands (visuo-tactile delay), and the duration of 

stroking (trial length). For each configuration of these parameters, we measured the 

distance between the participantʼs actual and perceived hand positions (proprioceptive 

drift). We then describe a probabilistic, hierarchical Bayesian multisensory integration 

model to account for the perceived hand position as a function of these manipulated 

parameters. 

Main Results 

The results from the first study showed our virtual reality setup to again induce 

comparable changes in illusory ownership to our previous work (2.2.1) as well as RHI 

setups with manual stimulation on rubber hands (Botvinick and Cohen, 1998; Tsakiris 

and Haggard, 2005). By analyzing hundreds of trials of hand localizations for variable 

degrees of visuo-tactile stroking synchrony (0 to 800 ms) on a wide range of visuo-

proprioceptive hand separations (0 to 35 cm), we observed that proprioceptive drift 

depends differently on incoming sensory cues as a function of our manipulated 

experimental parameters (Figure 11). In particular, for small visuo-proprioceptive 

separations (< 10 cm), participants systematically mislocalized their hand toward the 

visual hand regardless of the amount of visuo-tactile delay, indicating that visual capture 
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dominates the perceived hand 

position. By contrast, proprioceptive 

drift was altered as a function of visuo-

tactile delay for visuo-proprioceptive 

separations between 10 and 30 cm, 

where synchronous stroking led to 

larger drifts than asynchronous 

stroking. Interestingly, maximum 

proprioceptive drift was found for 

synchronous stroking at visuo-

proprioceptive separations between 

15 and 20 cm, in line with previous 

reports (Tsakiris and Haggard, 2010; 

Botvinick and Cohen, 1998; see 

corresponding article Section 3.2, 

Table S2). For large visuo-

proprioceptive separations (> 30 cm), 

proprioceptive drift was diminished (i.e. 

participants perceived their hand to be 

localized close to their actual hand 

position) and visuo-tactile delay again 

did not influence perceived hand 

position. Concerning stroke duration 

(trial length), we found that longer 

stroking durations for asynchronous 

trials resulted in significantly smaller 

drifts than for short stroking durations. Taken together, this distribution of proprioceptive 

drift suggests that participants fuse visual, proprioceptive, and tactile cues differentially 
depending on a complex interaction of our manipulated parameters. 

 
Figure 11: Recalibration of perceived hand 
position depends on visuo-proprioceptive 
separation and visuo-tactile delay. Perceived hand 
localizations for a wide range of visuo-proprioceptive 
hand separations. Drift is taken as the difference 
between perceived and actual hand positions. 
Responses following the solid black line indicate 
accurate hand localizations (i.e. actual proprioceptive 
hand position) whereas the dotted line indicates 
responses that follow where participants saw the 
virtual hand. Participants perceived their hand near 
the virtual hand for small visuo-proprioceptive 
separations and near their actual hand for large 
separations, independent to visuo-tactile delay. In 
intermediate separations (10-30 cm), synchronous 
visuo-tactile delay leads to perceived drifts toward 
the virtual hand whereas asynchronous stroking 
pushes perceived hand localizations toward the real 
hand. 
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 To better understand these empirical data, we constructed a computational 

model that accounted for visual, proprioceptive, and tactile cues as well as a “higher-

level” notion of ownership for the hand. Our model accurately accounted for both the 

mean and variance of the observed empirical measurements, suggesting that 

proprioceptive drift can be explained as a behavioral consequence of statistical fusion of 

incoming sensory cues. Importantly, the model assigns a probability of ownership over 

the virtual hand for the full range of visuo-proprioceptive separations, rendering it a 

useful computational tool to select per-subject parameters that will lead to maximum 
illusory effects. 

 

2.3   Studies on sense of agency and brain-machine interfaces 
 

2.3.1   Study 4: The sense of agency for brain-machine actions 

Though an extensive and growing literature has investigated the sense of agency (SOA) 

over movements of the fingers (Repp, 2005, 2006; Repp and Knoblich, 2007; Knoblich 

and Repp, 2009), hands (Daprati et al., 1997; Daprati and Sirigu, 2002; van den Bos 

and Jeannerod, 2002), arms (Nielsen, 1963; Fourneret and Jeannerod; 1998, Franck et 

al., 2001; Synofzik et al., 2006) and recently, the full body (Kanape et al., 2010), all of 

these studies probe our sense of causal authorship over actions mediated by the 

musculoskeletal system of the body. One novel avenue to explore actions that 

circumvent the standard motor outputs of the body could be to investigate SOA in the 

context of actions driven by direct cortical decoding (BMI-actions). Here, we asked 

whether SOA also extends to BMI-actions and whether SOA for BMI-actions is 

influenced by insertion of delay between real-time decoded neural activity and its visual 
sensory consequences. 

Methods 

Participants were trained to modulate electrical brain activity over sensorimotor cortices 

with a cued motor imagery task. They were instructed to imagine left or right hand 

clasping to move a visual cursor to the left or right of a screen, respectively. In a first 
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experiment, we injected a delay (six delays ranging from 0 to 3750 ms at 750 ms 

intervals) between the decoded cortical activity and its visual consequences on a trial-

by-trial basis (henceforth referred to as “visuo-neural delay”; Figure 12). We additionally 

tested insertion of spatial conflicts by 

manipulating the direction of the cursor to 

be either congruent or opposite 

(incongruent) to the trained directional 

association (e.g. for incongruent trials, left 
imagery moved the cursor to the right).  

In a second study we sought to 

confirm the effects of the first study and to 

additionally test shorter visuo-neural 

delays (6 delays: 0 to 1s in 250ms 

intervals, and 3.75s). Only spatially 

congruent trials were tested in Study 2 

and we additionally recorded 

electromyography (EMG) signals from the 

forearms to assess the role of any limb 
muscle contractions on SOA judgments.  

For each trial, we measured real-

time classification performance as the 

percentage of time frames that classifier 

output corresponded to the cued side and 

SOA as a two alternative forced-choice 

answer to whether or not participants felt 

they were controlling the cursor during 
that trial.  

 

	
  
Figure 12: Experimental design to test the 
sense of agency for BMI-actions. Raw, real-
time EEG data was sampled at 128Hz, 
processed and classified to correspond to left or 
right motor imagery. Real-time classifier output 
was then subjected to a temporal deviation (0 to 
3.75s in 750ms intervals) and a spatial 
manipulation. Congruent trials followed the 
associated learning (e.g. left motor imagery leads 
to left cursor displacements), whereas 
incongruent trials inverted this relationship. The 
final signal was then translated to a visual cursor 
position update (8ms latency). 
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Main Results 

We found SOA for BMI-actions to be low for incongruent and high for congruent 

feedback and that SOA depends differently on delay for congruent and incongruent 

trials (F(5,7) = 5.76; P = 0.001; Figure 13). In particular, SOA significantly decreased from 

84 to 58% with increasing delay in congruent trials (P = 0.001), but was not modulated 

in incongruent trials (20-34%; P = 0.13). Our data from Study 2 confirmed the effect of 

visuo-neural delay on SOA (F(5,6) = 7.82; P = 0.0001), but showed that only the largest 
visuo-neural delay modulated SOA judgments.  

Average EEG classification performance 

remained high and showed no differences 

across experimental conditions. Moreover, EEG 

analysis on the statistically-derived classification 

features and frequency power changes showed 

that participants used the expected mu-/ beta-

band oscillations over bilateral sensorimotor 

cortex to control the cursor movements in all 

experimental conditions. Furthermore, EMG 

results showed no distinguishing relationship to 

motor imagery side. Taken together, we argue 

that SOA modulation therefore cannot be 

accounted for by differences across conditions in 

the decoder performance or by minor limb 
movements or covert muscle contractions. 

Finally, our psychometric analysis on 

individual trials (fitting psychometric SOA curves to classification performance for low 

and high delays) showed low classification performance to be associated with low SOA 

and high classification performance with high SOA. The inverse relationship was found 

for incongruent trials (low classification performance: high SOA; high classification 

performance: low SOA). Insertion of delay led to systematic changes in the 

	
  
Figure 13: Sense of agency for BMI-
actions. Sense of agency for BMI-
actions is high for congruent and low for 
incongruent trials. Additionally, SOA was 
found to decrease as a function of visuo-
neural delay for congruent BMI-actions 
(in black). By contrast, incongruent 
spatial deviations (in red) were strong 
enough to dampen the effect of visuo-
neural delay. 
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psychometric slope (sensitivity) as well as the point of subjective equality (PSE) for both 

congruent and incongruent trials. These analyses collectively show the influence of 

visuo-neural delay on subtle and highly systematic trial-by-trial fluctuations in 
classification performance and the result on perceived BMI-action authorship. 
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Althoughwe feel, see, and experience our hands as our own (body or hand ownership), recent research has shown
that illusory hand ownership can be induced for fake or virtual hands andmay be useful for neuroprosthetics and
brain–computer interfaces. Despite the vast amount of behavioral data on illusory hand ownership, neuroimaging
studies are rare, in particular electrophysiological studies. Thus, while the neural systems underlying hand owner-
ship are relatively well described, the spectral signatures of body ownership asmeasured by electroencephalogra-
phy (EEG) remain elusive. Here we induced illusory hand ownership in an automated, computer-controlled
manner using virtual reality while recording 64-channel EEG and found that illusory hand ownership is reflected
by a body-specificmodulation in themu-band over fronto-parietal cortex. In a second experiment in the same sub-
jects, we then show that mu as well as beta-band activity in highly similar fronto-parietal regions was also mod-
ulated during a motor imagery task often used in paradigms employing non-invasive brain–computer interface
technology. These data provide insights into the electrophysiological brainmechanismsof illusory hand ownership
and their strongly overlapping mechanisms with motor imagery in fronto-parietal cortex. They also highlight the
potential of combining high-resolution EEG with virtual reality setups and automatized stimulation protocols for
systematic, reproducible stimulus presentation in cognitive neuroscience, and may inform the design of
non-invasive brain–computer interfaces.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Human self-consciousness has become an increasingly promi-
nent issue in the cognitive neurosciences in recent years (Blanke
andMetzinger, 2008; Christoff et al., 2011; Gallagher, 2000). Where-
as earlier research focusedmainly on higher-level aspects such as mem-
ory, personality, or language and how these functions relate to the self
and self-consciousness (Gillihan and Farah, 2005; Legrand and Ruby,
2009; Northoff et al., 2006), recent studies have started to investigate
more basic aspects of self-consciousness, especially how we experience
and perceive our body. Such mechanisms of bodily self-consciousness
consist of brain mechanisms encoding the different multisensory and
sensorimotor states of the body (Berlucchi and Aglioti, 1997, 2009;
Botvinick, 2004; Damasio, 2000; Jeannerod, 2006, 2007; Vogeley and
Fink, 2003).

One aspect that has been investigated intensively over the last decade
is the experience that our body and its parts belong to us and are not
those of other people, so-called body ownership. Ownership for one's
hand has been proposed to constitute a crucial aspect of bodily self-
consciousness (De Vignemont, 2011; Gallagher, 2000; Makin et al.,
2008; Tsakiris, 2010) and an increasing number of empirical data on
ole Polytechnique Fédérale de

rights reserved.
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the neural underpinnings of body ownership have pointed to the impor-
tance ofmultisensory integration of visual, tactile and proprioceptive sig-
nals (Botvinick, 2004; Botvinick and Cohen, 1998; Ehrsson et al., 2005;
Tsakiris and Haggard, 2005). A widely used paradigm to study the mul-
tisensory perception of upper limbs is the rubber hand illusion (RHI;
Botvinick and Cohen, 1998) where participants watch an artificial hand
(visual cue) being stroked by a paintbrush in synchrony with stroking
on their own corresponding and occluded hand (tactile cue). This
visuo-tactile manipulation alters bodily experience, inducing the illusion
that the artificial hand being touched is one's own hand (measured by
questionnaire ratings) and is generally associated with a measurable
mislocalization of the participant's hand towards the fake hand. The il-
lusion does not occur when the stroking provided to the real hand and
the artificial hand is not synchronous, when the fake hand does not
match the posture of the real hand, or when control objects are stroked
(Botvinick and Cohen, 1998; Ehrsson et al., 2004; Tsakiris and Haggard,
2005).

To investigate the brain mechanisms of illusory hand ownership,
most neuroimaging studies have manipulated the synchrony of
experimenter-applied visuo-tactile stroking and the congruence of
posture or handedness of the fake and real hands. Using fMRI, illuso-
ry ownership as induced by synchronous visuo-tactile stroking on
congruent fake hand postures was found to be reflected by BOLD ac-
tivity in bilateral premotor cortices (Ehrsson et al., 2004), cerebel-
lum (Ehrsson et al., 2005), and intraparietal cortices (Ehrsson et al.,

http://dx.doi.org/10.1016/j.neuroimage.2012.09.027
mailto:olaf.blanke@epfl.ch
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2004, 2005). If the fake hand is threatened by bringing a needle near
to it, other studies found that activity in the supplementary motor
area (Ehrsson et al., 2007) and posterior parietal regions (Lloyd et al.,
2006) reflects illusory ownership. In addition, activity in bilateral anterior
insular and anterior cingulate cortices (Ehrsson et al., 2007) or activity in
premotor cortex and cerebellum (Ehrsson et al., 2004) was found to
correlate with the strength of ownership illusion (as measured by ques-
tionnaire ratings). In a PET study, Tsakiris et al. (2007) reported that
activity in the right posterior insula, sensorimotor cortices (precentral
and postcentral gyri), as well as primary somatosensory cortex was asso-
ciatedwith illusory hand ownership.Moreover, activity in the right insula
and left somatosensory cortex correlated with the magnitude of proprio-
ceptive drift (Tsakiris et al., 2007), a phenomenon classically associated
with illusory hand ownership (Botvinick and Cohen, 1998; but see also
Rohde et al., 2011). Finally, clinical studies in stroke patients showed a re-
lationship between lesion location and damaged connections between
premotor, frontal operculum, basal ganglia, parietal, and prefrontal corti-
ces with the inability to experience illusory ownership for a fake hand
(Zeller et al., 2011). To summarize, neuroimaging studies across a variety
of RHI setups and imaging techniques (e.g. fMRI, PET, lesion mapping)
have revealed a wide network of brain regions associated with illusory
body ownership during the RHI. These regions include the intraparietal
cortex, primary somatosensory cortex (precentral and postcentral
gyri), the ventral premotor cortex, the right insular lobe, the anterior cin-
gulate cortex, and the cerebellum (Ehrsson et al., 2004, 2005, 2007; Lloyd
et al., 2006; Tsakiris et al., 2007; Zeller et al., 2011).

Concerning electrophysiological correlates of illusory hand own-
ership, several EEG studies using somatosensory evoked potentials
(SEPs) or frequency analysis have also been carried out. For example,
Kanayama et al. (2007, 2009) reported that gamma-band oscillations
over parietal scalp regions varied according to the strength of illuso-
ry hand ownership in a RHI-like paradigm. These authors observed
an increase in inter-electrode synchrony in the lower gamma-band
(30–50 Hz) over parietal scalp regions during the integration of tac-
tile and visual cues in peripersonal space. In an ERP study, Press et al.
(2008) showed enhancement of the N140 and late somatosensory
SEP components (evoked by hand tapping) after a period of synchro-
nous stroking of a rubber hand, likely reflecting activation in somato-
sensory regions of the parietal cortex and/or premotor cortex.
Related work using a different illusory hand ownership paradigm
(numbness illusion) measured SEPs and implicated primary somato-
sensory cortex (Dieguez et al., 2009) based on the observation that
the earliest cortical SEP component after median nerve stimulation
(N20 component) was enhanced and correlated in strengthwith illuso-
ry ownership. Across these electrophysiological studies employing di-
verse experimental procedures, these data reveal that premotor and
parietal cortex activity as well as gamma-band oscillations have most
consistently been linked to illusory hand ownership.

Yet, in a number of related sensorimotor tasks, neural oscillations
over central areas including premotor, motor, and somatosensory
cortices have been linked rather to the mu rhythm (8–13 Hz oscilla-
tions). Sensorimotor tasks (Pineda, 2005), motor action execution, inhi-
bition, and observation (Gastaut, 1952; Howe and Sterman, 1972;
Niedermeyer and Lopes da Silva, 1993) are reflected in suchmu oscilla-
tions. Additionally, both intracranial electrophysiology (Gastaut and
Bert, 1954; Mukamel et al., 2010; Tremblay et al., 2004) and surface
EEG (Cochin et al., 1999, 1998) consistently show comparable mu
rhythm suppression during both the execution and the observation of
different movements. Mu oscillations have also been investigated with
respect to motor imagery (review in Neuper et al., 2006) and have
been linked tomu suppression in parietal cortex, premotor, and prima-
ry sensorimotor areas (Pfurtscheller and Neuper, 1997; Pfurtscheller et
al., 1997a). These oscillations during hand motor imagery have also
been decoded online in non-invasive brain–computer interfaces
(Pfurtscheller et al., 1997b). The mu rhythm is also modulated by
touch (Pfurtscheller, 1981), the observation of touch of another person
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(Cheyne et al., 2003), and covaries with the BOLD signal in dorsal
premotor, inferior parietal, and primary somatosensory cortices during
both action execution and observation (Arnstein et al., 2011). More re-
cently, it has also been shown that changes in body ownership for a full
body as seen in a virtual reality environment are reflected in
mu-activity in premotor, sensorimotor, and medial prefrontal cortices
(Lenggenhager et al., 2011).

To summarize, despite this frequential and anatomical convergence
of illusory hand ownership and hand motor imagery, the spatial and
spectral relationship betweenmotor imagery and illusory hand owner-
ship has not been studied directly in the same individuals. Moreover,
hand motor imagery is often used in non-invasive brain–computer in-
terfaces (e.g. Pfurtscheller and Neuper, 2001) and it has recently been
speculated that illusory ownership over virtual and prosthetic limbs
may benefit neuroprosthetics and neuro-rehabilitation (Ehrsson et al.,
2008; Marasco et al., 2011). Here, we designed a virtual reality environ-
ment with automatized, machine-controlled visuo-tactile stimulation to
induce changes in illusory hand ownership while recording 64-channel
EEG. Using this setup, we first analyzed cortical oscillations and their
neural generators reflecting changes in illusory body ownership. Next,
we investigated – in the same subjects – brain oscillations and their neu-
ral generators during a handmotor imagery paradigm (e.g. Pfurtscheller
et al., 1997b) and directly compared ownership-related brain activations
with oscillations present during motor imagery.

Materials and methods

Participants

12 healthy, right-handed participants were recruited (ages 22.7±4.1
mean±SD; 3 females). All participants had normal or corrected-to-
normal vision and gave informed consent prior to participation. The
studywas undertaken in accordancewith the ethical standards as defined
in the Declaration of Helsinki and was approved by the local ethics re-
search committee at the University of Lausanne.

Tactile stimulation

Tactile stimulation was provided with a total of eight button-style vi-
brationmotors (PrecisionMicrodrives, London, UK) affixed in a line to the
palms of the participants' hands (Fig. 1A). On each hand, a custom-made
set of four vibration motors (12 mm diameter; 1.7 g; maximum rotation
frequency 150 Hz) was placed with an inter-vibrator distance of 2 cm.
The motors were programmed to vibrate in sequence to simulate a con-
tinuous, stroke-like movement lasting 450 ms (75 ms per motor; 50 ms
inter-motor vibrationpause). This type of sequencewas chosen to autom-
atize the stroking patterns that are generally used tomanually stroke par-
ticipants' hands to induce the RHI (i.e. Botvinick and Cohen, 1998;
Ehrsson et al., 2004). The direction of the stroking sequencewas either in-
ward, toward a central fixation cross (6 subjects), or outward, away from
the fixation cross (6 subjects). An inter-stroke interval of 400 ms was
inserted between strokes to aid in perceiving the sequence of vibrations
as a single motion.

Stimuli and virtual reality

Visual stimuli were rendered in stereo (XVR; VRMedia, Pisa, Italy) on
a FakespaceWide5head-mounted display (HMD; Fakespace Labs,Moun-
tain View, CA, USA). The HMD displayed a virtual scene with either two
virtual arms or two virtual non-body control objects visually projected
as extending from the body and resting on a tabletop (Figs. 1B, C). Four
virtual spheres on each palm of the two virtual arms (or two virtual con-
trol objects) visually represented the four vibration motors on the real
hands. Visual “vibrations” were represented by changing the virtual
motor's color fromwhite to red and animating it to visually jitter between



Fig. 1. Experimental setup and visuo-tactile stimulation. A, 64-channel EEG (small inset) was recorded while visual stimuli were presented on a head-mounted display. Tactile stim-
ulation was provided by vibration motors affixed to the palm of the left and right hands. B, Participants saw either stereoscopic virtual arms or C, virtual non-body objects projecting
from their body onto a virtual table (~20 cm above where they felt their hands to be on their laps).
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±1 cm from its original position for the entire duration of the physical
vibration.

Procedure

Participants were seated at a table with their arms resting (palms
up) on their legs (Fig. 1A). Head movements were restrained with a
chin rest and the experiment took place in a darkened room. The
HMD fully blocked the subject's vision of the table, the physical
arms and vibrators, and the rest of the room. In order to approximate-
ly calibrate the perspective of the virtual scene to that of the physical
scene, the HMD was individually fitted to each participant such that
the virtual and physical tables aligned. The two virtual arms (or two
virtual control objects) were projected above the participant's physi-
cal arms (elevated by approx. 20 cm).

Synchronous visuo-tactile stimulation was defined such that visual
and tactile vibrations occurred with no temporal delay and with spatial
congruency between visual and tactile stimuli. To achieve asynchro-
nous visuo-tactile stimulation for a given stroke (i.e. pattern of four vi-
brations), we inserted a random delay of 50 to 150 ms of the onset of
the visual stimulationwith respect to the onset of the tactile stimulation
and randomly varied the direction of visual stroking (inward or out-
ward; see Costantini and Haggard, 2007) while maintaining the same
physical vibration sequence.

Pilot study

In a pilot study, using the same automated experimental setup as used
in the main experiment, we induced changes in subjective (self-reports)
and behavioral measures (proprioceptive drift) that are compatible with
previous RHI experiments using unilateral visuo-tactile stimulation (see
Supplementary material). In particular, our pilot results indicate that
illusory hand ownership and perceived hand position were shifted to-
ward the virtual hand for synchronous as compared to asynchronous
visuo-tactile stroking (i.e. significant change in proprioceptive drift;
Botvinick and Cohen, 1998; Tsakiris and Haggard, 2005). In contrast to
the bilateral inductionof the RHI (illusory ownership experiment) andbi-
lateral presentation of visual hands (both illusory ownership and motor
imagery experiments), the pilot study involved unilateral induction of
the RHI. In the main experiments, we only measured subjective
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responses (illusory body ownership) as we were mostly interested in il-
lusory hand ownership and its relation to motor imagery, and because
we wished to avoid augmenting the already long experimental protocol.

Hand ownership

Following the behavioral pilot study confirming that our automatized
and virtual reality setup induces comparable changes in hand ownership
to those described in previous RHI studies usingmanually applied strok-
ing, we carried out an EEG study to investigate the neuralmechanisms of
illusory hand ownership. We manipulated the strength of illusory hand
ownership using a 2×2 factorial designwith the factors Stroking andOb-
ject. The Stroking factor consisted of two levels of visuo-tactile stimula-
tion (synchronous and asynchronous; as defined above). The Object
factorwas composed of two levels: virtual arms or virtual non-body con-
trol objects. An additional baseline conditionwas recorded, resulting in a
total of five conditions. Each experimental condition was repeated three
times and their presentation orderwas randomized and balancedwithin
and across subjects.

Participants were asked to fixate on a cross that was placed centrally
between the hands/objects located at a visual angle of 37° to the left and
right. For 10 s, participants received visuo-tactile stimulation according
to one of the experimental conditions. For the baseline condition, no tac-
tile stimulation was provided to the hands and EEGwas recorded at rest
as participants fixated between the hands/objects as in the experimental
conditions. To quantify hand ownership (Botvinick and Cohen, 1998;
Slater et al., 2008) participants were asked to verbally respond to four
questions (on a 1–7 Likert scale) immediately following visuo-tactile
stimulation. The four questions were projected on the virtual table: 1)
It seemed as if I were feeling the vibrations in the location where I saw the
virtual hands being vibrated, 2) It seemed as though the vibrations I felt
were caused by the vibrations I sawon the virtual hands, 3) I felt as if the vir-
tual handsweremy ownhands, and 4) I felt as if my (real) handsweremov-
ing or drifting towards the virtual hands' position.

Motor imagery

We wished to additionally investigate how the neural mecha-
nisms behind motor imagery of hand movements overlap with the
neural systems activated during the experience of hand ownership.



Table 1
Significant electrodes used in whole-scalp cluster analyses. Electrode labels (10–20 sys-
tem) for scalp electrodes surviving statistical correction in the mu-band (8–13 Hz) for
the illusory hand ownership and motor imagery of hands studies. Contiguous, significant,
individual electrodes were then grouped, resulting in two sensorimotor clusters (see Ma-
terials and methods section).

Individual electrodes Clustered

Illusory ownership
Body sync C6, CP6, T8 Left cluster:

C1, C3, CP1, CP3Body async C3, C4, T8, CP6
Object sync C1, C3, CP1, CP3,

FT8, FC6, C4, CP4,
CP6

Right cluster:
C4, C6, CP4, CP6

Object async C4, C6

Motor imagery
Left imagery C1, C3, C5, CP1,

P9, PO7, C4, C6,
CP6, CP2, P2, P4,

P6, PO4

Left cluster:
C1, C3, CP1, C5

Right imagery C1, C3, C5, CP1,
P9, PO7, C4, C6,
CP6, CP2, P2, P4,

P6, PO4

Right cluster:
C4, C6, CP6,

CP2, P2, P4, P6,
PO4
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Participants were asked to fixate on a green fixation cross that was
shown for 500 ms and was located centrally between the hands
or the control objects. The fixation cross was briefly replaced by a
centrally presented left or right arrow cue for 500 ms and finally re-
placed by another central fixation cross in red that was shown for
4.5 s. While fixating on the red fixation cross, participants were
asked to imagine clasping and unclasping the cued hand (right or
left hand; Pfurtscheller et al., 1997b). It is important to note that
while performing motor imagery, participants received the same vi-
sual scene as during the RHI procedure (bilateral visual hand stimuli;
e.g. Neuper et al., 2009). Each experimental block consisted of 30
randomized trials (15 left hand imagery, 15 right hand imagery tri-
als) and was repeated three times, resulting in 90 trials.

EEG: Preprocessing

64-channel EEG was sampled at 2048 Hz (Biosemi Inc, Amsterdam,
Netherlands), downsampled to 512 Hz, and subjected to visual inspec-
tion in the time and frequency domains (e.g. Tadi et al., 2009). Electrodes
with >50 μV DC-offset were rejected. The mean percentage of elec-
trodes included was 92% (59±1 electrodes; mean±SD). Timeframes
with eye blinks and transient conductance shifts were marked as
artifacted in a semi-automated manner (see Lenggenhager et al., 2011).

To analyze the RHI data, thirty total seconds of recorded EEG per
condition were broken into 2 s epochs (14±1 s; mean±SD per sub-
ject, per condition). For motor imagery, 2 min of total EEG data was
collected for the period immediately following the imagery cue and
was further broken into 2.25 s epochs (60±19 epochs; mean±SD
per subject, per condition). Note that the motor imagery EEG data
were part of a larger study (Evans & Blanke; unpublished results),
leading to the difference in number of data epochs analyzed for RHI
and motor imagery periods. To maximize usage of non-artifacted
data, epochs were fit with 25% overlap between timeframes marked
as artifacted (see above). Prior to computing power spectral densities
(PSD), scalp potentials were re-referenced with respect to the aver-
age reference, the linear trend was removed, and a Hann window
was applied to each epoch (Blackman and Tukey, 1959). PSDs were
then computed at a 0.5 Hz resolution for each epoch with a Fast Fou-
rier Transform (Matlab, Mathworks, Natick, Massachusetts, USA) in
the following three frequency bands alpha/mu (8–13 Hz), beta
(14–25 Hz) and gamma (25–55 Hz). Finally, PSD values for each sub-
ject s, experimental condition c, frequency band f, and electrode e,
Pe(s,c,f), were averaged across epochs and a log power ratio (LPR)
was computed by taking the logarithm of the result of dividing each
PSD by the subject's mean baseline PSD, Me(s,f), (i.e. Oberman et al.,
2005). The LPRs, Le(s,c,f), thus took the form:

Le s; c; fð Þ ¼ ln Pe s; c; fð Þð Þ–ln Me s; fð Þð Þ

EEG: Statistical analysis

Hand ownership during visuo-tactile stimulation

Single electrode analysis. We analyzed EEG signals recorded at elec-
trodes C3 and C4, located over left and right hand sensorimotor cor-
tex (Oberman et al., 2005; Pfurtscheller and Neuper, 1994). These
electrodes were selected on the basis of the hypothesized location
of the overlap between brain activity associated with illusory hand
ownership and hand motor imagery (e.g. Kanayama et al., 2009;
Munzert et al., 2009) and because somatosensory evoked potentials
at electrodes C3 and C4 have been shown to be modulated by illusory
ownership (Peled et al., 2003; Press et al., 2008). We note, however,
that EEG changes at scalp electrodes C3/C4 may result from neural
generators at close and distant locations in the brain (Michel and
Murray, 2012). LPRs were contrasted across the four experimental
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conditions using a 2×2 repeated-measures ANOVA and were further
analyzed with post-hoc t-tests corrected for multiple comparisons
(Bonferroni correction).

Cluster analysis. Next, we searched for scalp electrodes where LPRs
reflected changes in illusory ownership. For this, we first determined
for each electrode, each experimental condition, and each frequency
bandwhether the LPRs significantly differed from the baseline condition
(i.e. LPR of 0) using two-tailed, paired t-tests (see Oberman et al., 2005).
This resulted in one scalp distribution of p-values for each experimental
condition (Bonferroni corrected for multiple comparisons; Maris and
Oostenveld, 2007). In the case when electrodes had been rejected dur-
ing preprocessing for one or more subjects (see EEG: Preprocessing sec-
tion), the statistical tests were performed with fewer measurements
(i.e. a smaller sample size). Neighboring significant electrodes were
then formed into spatial clusters by taking the union of the sets of all sig-
nificant electrodes across the four experimental conditions and requir-
ing that each member electrode have at least two neighbors (for a
similar method, see Lenggenhager et al., 2011; Mitsis et al., 2008). This
clustering technique resulted in the formation of clusters of electrodes
that significantly differ from the baseline condition in at least one, but
not necessarily all of the experimental conditions. Potential neighbors
were defined as electrodes falling within a radius of 3 cm and, under
this definition, themean number of neighbors per electrode was 4. Elec-
trode labels for all significant electrodes and the resulting clusters in the
mu band (8–13 Hz) are presented in Table 1. Finally, for each experi-
mental condition, a per-subject LPR was computed within each cluster
by taking the mean LPR of the cluster's member electrodes. Statistical
differences between experimental conditions were gaged using a 2×2
repeated-measures ANOVA on the distribution of LPRs across subjects.
We additionally analyzed whether subjective questionnaire ratings for
the ownership question (item 3) correlated (Pearson correlation) with
the per-subject, mean LPRs in the electrode clusters for mu-, beta-,
and gamma-bands.

Motor imagery
Motor imagery has been shown to exhibit lateralized effects over sen-

sorimotor cortex, particularly in the mu- and beta-bands (Pfurtscheller
and Neuper, 1997), and also in the gamma band (Miller et al., 2010;
Pfurtscheller andNeuper, 2001). To verifywhether our paradigmand ex-
perimental setup using automated stroking and virtual reality was also
associated with these EEG changes, we analyzed LPRs in mu, beta, and
gamma bands over left and right sensorimotor scalp regions (at the



Fig. 2. Illusory hand ownership. Mean questionnaire scores probing the subjective ex-
perience of illusory ownership during visuo-tactile stimulation (Question 3; error bars
SEM). Two types of stimulation (synchronous, asynchronous) were performed on two
different visual objects (hands or control objects). * indicates a significant difference
between experimental conditions (pb0.05; Wilcoxon matched pairs test; corrected).
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level of single electrodes, C3 and C4, and at the cluster level) during left
and right motor imagery. We used these classical neurophysiological re-
sponses to motor imagery as a biomarker that participants performed
the motor imagery task. No further questionnaire or behavioral mea-
sures related motor imagery process was performed, because the exper-
iment was already long. As a baseline condition, we calculated the
average of left and right motor imagery on a per-electrode (scalp) or
per-voxel (inverse solution) basis. Statistical differences were assessed
using a 2×2 repeated-measures ANOVA with the factors Imagery (left
or right hand) and Electrode side (left or right scalp hemisphere). Finally,
post-hoc, two-tailed t-tests were used to further analyze any main ef-
fects or interactions (Bonferroni corrected).

Source localization
Cortical neural generators for scalp potentialswere computedwith a

pseudo-inverse of the electrical lead field (sLORETA; Pascual-Marqui,
2002) using a head model extracted from a “standard” brain template
(MNI152; Fuchs et al., 2002). Raw EEG data were preprocessed as in
the scalp-level analysis. Electrodes previously rejected from scalp level
analysis were replaced with a linear interpolation. Cross-spectra were
computed in mu-, beta- and gamma-bands, were averaged per-
subject and per-condition, and an inverse transformation matrix was
applied to the cross spectra. Finally, an F-ratio was computed at the
voxel level to statistically contrast each experimental condition to the
baseline condition, as performed in an earlier work on body ownership
(e.g. Lenggenhager et al., 2011) and relatedwork (Oberman et al., 2005;
Pineda, 2005). This contrast was also used for our analysis at the level of
the scalp electrodes. Statistical mapswere log transformed, participant-
wise normalized, and corrected for Type I errors (SnPM; Nichols and
Holmes, 2002). All reported coordinates are in MNI (Montreal Neuro-
logical Institute) space.

We additionally wished to verify that differences between the
body synchronous and body asynchronous conditions observed at
the single trace and cluster levels remained consistent at the voxel
level. For this, we first determined two spherical ROIs based on the
contrasts obtained separately from the inverse solution for the body
synchronous and the body asynchronous conditions versus the base-
line condition. The center of each ROI was defined as the left and right
hemispheric centroids of the union of all supra-threshold voxels
(F-ratiob−0.175) and the volume of the ROI defined by a 10 mm ra-
dius. The mean log power across voxels in these two ROIs was then
determined for both body conditions.

Overlap analysis
To assess spectral and spatial commonalities between hand own-

ership and hand motor imagery at the scalp level, a meta-set of elec-
trodes was composed for both study 1 and for study 2. To build these
two electrode meta-sets, the union of the clustered electrodes from
each study was taken (c.f. Table 1, rightmost column). These clustered
electrodes originated from the set of electrodes differing from the
baseline condition in at least one, but not necessarily all experimental
conditions from each respective study.

We analyzed similarities in the spectral profiles by taking the
per-subject peak power frequency from the mean power spectra in
the twometa-sets. Differences in peak power frequencywere separate-
ly assessed for the left and right hemispheres using paired, two-tailed
t-tests. Next, we computed spatial overlap at the scalp level by counting
overlapping electrodes from the two meta-sets separately in the left
and right hemispheres.

A similar method was used to compute spatial overlap at the voxel
level. Supra-threshold voxels were taken from the respective inverse
solutions using the same mask (F-ratiob−0.175) for each experi-
mental condition. In order to then compare the significant voxels as-
sociated with motor imagery with those associated with illusory hand
ownership in each of the four experimental conditions, we collapsed
left and right motor imagery data sets into a single data set of
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significant voxels. To do so, we applied the supra-threshold mask to
the inverse solutions for both left and right imagery and then took
the union of the significant voxels from these two sets. Left hemi-
spheric (MNI X coordinateb0) and right hemispheric (MNI X coordi-
nate>0) overlaps were quantified separately by counting the number
of overlapping and non-overlapping voxels. To assess the overall over-
lap in each experimental condition from the illusory hand ownership
study, the mean of the left and right hemispheric overlap was taken,
resulting in one percentage overlap value per condition.

Results

Self-reported illusory hand ownership

A Friedman non-parametric ANOVA revealed a significant effect
of the experimental condition on subjective ratings for each item of
the questionnaire (Q1: χ2

(12,3)=18.82; Q2: χ2
(12,3)=16.78; Q3:

χ2
(12,3)=20.01; Q4: χ2

(12,3)=20.87; all pb0.001). Fig. 2 shows
that illusory hand ownership (Q3) was largest in the synchronous,
body stroking condition (henceforth referred to as illusion condi-
tion). Post-hoc, non-parametric Wilcoxon matched pair tests (all com-
parisons were Bonferroni corrected) revealed, as predicted, that only
the illusion condition significantly differed from all other conditions
(all pb0.01). Importantly, only the illusion condition resulted in posi-
tive illusory hand ownership and no significant difference was found
between the non-body control objects (p>0.05).

For items 1 and 2, post-hoc Wilcoxon matched pair tests revealed a
significant difference between synchronous and asynchronous stroking
for both body and non-body objects (both pb0.01). No significant dif-
ference in subjective ratings between body and non-body objects was
observed for synchronous (both p>0.10) or for asynchronous stroking
(both p>0.10). For item 4, the post-hoc tests showed a significant dif-
ference between synchronous and asynchronous stroking for bodily ob-
jects (pb0.02), but no such difference for non-body objects (p>0.10).
The full questionnaire results are plotted in Supplemental Fig. S1.

Electrophysiology of illusory hand ownership

Single electrode analysis (electrodes C3/C4)
Formu-band activity at electrode C4, a repeated-measures ANOVA re-

vealed a significant two-way interaction between Synchrony and Object
(F1,11=6.43, pb0.05) but no main effects of Synchrony or Object (both
p>0.20). The mu-band power in the illusion condition was found to be
less strongly suppressed than in the remaining conditions and thus dif-
fered significantly from the asynchronous body condition (pb0.01) as
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well as the synchronous object condition (pb0.05; Fig. 3B). No such dif-
ference was found between synchronous and asynchronous stroking
for the non-body control objects (p>0.05). At electrode C3, mu-band
power did not show any significant interaction or main effects (all
p>0.10).

In beta- and gamma-bands at electrode C4, no significant main ef-
fects or interactions were found (all p>0.05). Beta and gamma-band
analysis at electrode C3 revealed no interaction or main effect of Ob-
ject (all p>0.05), but a main effect of Synchrony in the beta-band
(F1,11=8.58; pb0.01) and the gamma-band (F1,11=4.73, pb0.05). A
full summary of the mean LPRs is presented in Table 2.

Cluster analysis
For each experimental condition, at least one electrode (mean: 5)

was found to significantly differ from the baseline condition in the
mu-band (Table 1; left column). Using our clustering technique, we
Fig. 3. Electrophysiological results for illusory ownership. A, Statistical scalp maps in top-vie
differ from the baseline condition in the mu-band (8–13 Hz). Blue indicates power suppre
ratios in the mu-band (mean±SEM) for the four visuo-tactile conditions at single ele
synchrony-dependent mu-band suppression whereas C3 showed a similar but non-signific
selective, synchrony-dependent mu-band modulation in the right cluster and a similar but
lusion condition against the baseline condition shows mu-band suppression to be localized t
left and right, log power is plotted in voxel-level ROIs (as defined in Materials and method
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found the electrode clusters (assembled across the experimental con-
ditions; see Materials andmethods section) to be localized to scalp re-
gions over right and left sensorimotor cortex (Fig. 3A; left cluster: 4
electrodes, right cluster: 4 electrodes; Table 1, right column). Statistical
analysis for the rightmu-band cluster revealed a two-way interaction be-
tween Synchrony and Object (F1,11=6.59, pb0.05) but no main effects
(both p>0.2). Mu-band power in the illusion condition was found to be
less strongly suppressed than the remaining conditions and to be signifi-
cantly different than the asynchronous body condition (pb0.05; Fig. 3C)
as well as the synchronous object condition (pb0.05). No such difference
was found between synchronous and asynchronous stroking for the
non-body control objects (p>0.05). For the left cluster, a trend towards
significance was found for the interaction term (p=0.09) without any
main effects (all p>0.35). Beta and gamma-band analysis in both left
and right mu-defined clusters did not reveal any significant interactions
or main effects (all p>0.05). The mean mu-band LPRs in the left and
w for each visuo-tactile condition showing the location of electrodes that significantly
ssion with respect to baseline and gray indicates non-significance. B, Mean log power
ctrodes over sensorimotor cortex. In electrode C4, we observed a body-selective,
ant pattern. C, left and right electrode clusters (4 electrodes left; 4 right) show a body
non-significant trend in the left cluster. D, Source localization for the contrast of the il-
o bilateral sensorimotor cortex (centered at the left and right postcentral gyrus). To the
s section) for body synchronous and body asynchronous conditions.
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right clusters for the illusion condition were not found to correlate with
the questionnaire responses for question 3 (all p>0.05). In the beta and
gamma bands, no electrodes were found to significantly differ from the
baseline condition. Thus, no electrode clusters were defined for beta- or
gamma-bands.

Source localization
The mu-band suppression found at the single electrode and

cluster levels in the illusion conditionwas localized to the sensorimotor
cortex and extended from premotor to posterior parietal cortex. Its
maximal focus was found at the right and left postcentral gyrus (right:
F=−0.35; Brodmann areas 3/4; peak MNI coordinates: X=40,
Y=−25, Z=55; left: F=−0.30; Brodmann areas 3/4; peak MNI coor-
dinates: X=−45, Y=−20, Z=55).

To confirm the log power difference observed at the single trace and
cluster levels at the voxel level, we defined two ROIs (seeMaterials and
methods section). The left hemispheric ROI had its centroid at X=−41,
Y=−26, Z=49 and the right ROI at X=40, Y=−28, Z=45. In agree-
mentwith single trace and cluster analyses, log powerwas found to dif-
fer between the body synchronous and body asynchronous conditions
in the right hemispheric ROI (pb0.05) but not in the left hemispheric
ROI (p>0.05). In Fig. 3D, log power for the synchronous body condition
and asynchronous body conditions is plotted for both ROIs and is plot-
ted alongside the inverse solution for the illusion condition.

In summary, illusory hand ownership was reflected in the suppres-
sion ofmu-band power at the postcentral gyrus extending into premotor
cortex and posterior parietal cortex. These localized oscillatory modula-
tions were absent for control conditions under otherwise identical
visuo-tactile conditions. Beta and gamma-band activity did not reflect il-
lusory ownership, visuo-tactile synchrony, or the sight of a virtual arm at
the cluster level. Rather, these frequency bands were modulated by
visuo-tactile synchrony at scalp electrode C3, and were not found to be
body-specific.

Motor imagery of hands

Using single trace (electrodes C3, C4), cluster, and source localization
analyses, we next studied whether mu, beta and gamma-band power
yields contralateral suppression (event-related desynchronization) and
ipsilateral enhancement (event-related synchronization) during lateralized
motor imagery tasks (Pfurtscheller and Neuper, 1997; Pfurtscheller et al.,
1997b) and how this compares to the observed changes in illusory hand
ownership. For this, we applied a 2×2 repeated-measures ANOVA with
the factors Imagery (left or right imagery) and Electrode side (left or
Table 2
Log power ratios for each experimental condition in single trace and cluster analyses.
Mean and standard error of log power ratios (illusory ownership) and log power
(motor imagery). Values are provided for single trace analyses (electrodes C3 and
C4) as well as cluster analyses (left and right clusters; see Materials and methods sec-
tion, Figs. 3 and 4).

Electrode C3 Electrode C4 Left cluster Right cluster

Illusory ownership
(mu)
Body sync −0.53±0.10 −0.31±0.05 −0.51±0.09 −0.35±0.05
Body async −0.64±0.10 −0.57±0.07 −0.55±0.11 −0.54±0.08
Object sync −0.63±0.11 −0.53±0.10 −0.66±0.10 −0.55±0.10
Object async −0.55±0.10 −0.50±0.09 −0.50±0.10 −0.44±0.09

Motor imagery (mu)
Left imagery 0.14±0.04 −0.20±0.05 0.10±0.04 −0.18±0.05
Right imagery −0.22±0.05 0.13±0.04 −0.17±0.06 0.13±0.04

Motor imagery
(beta)
Left imagery 0.06±0.02 −0.13±0.04 0.04±0.01 −0.12±0.03
Right imagery −0.11±0.03 0.09±0.03 −0.06±0.02 0.08±0.03
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right hemisphere). Table 2 summarizes the mean log powers in the left
and right motor imagery conditions.

Single electrode analysis (electrodes C3/C4)
A repeated-measures ANOVA on the mu-band LPRs showed a

significant two-way interaction between Imagery and Electrode
side (F1,11=25.89, pb0.01) without significant main effects (both
p>0.5). Further testing revealed that this was caused by a signifi-
cant difference in mu-band power between contralateral and ipsi-
lateral motor imagery at C3 (pb0.01) and at C4 (pb0.01; Fig. 4C)
and, in particular, a stronger suppression in mu-band power at C3
for right imagery (compared to right imagery at C4; pb0.01) and
at C4 for left imagery (compared to left imagery at C3; pb0.01).

In the beta-band, the same patternwas observed as in themu-band,
namely a significant two-way interaction (F1,11=15.77, pb0.01) and a
significant difference between contralateral and ipsilateral motor imag-
ery at electrodes C3 (pb0.01) and C4 (pb0.01). As for mu-band power,
beta-band power was also significantly suppressed for right motor im-
agery in electrode C3 (as compared to C4; pb0.01) and suppressed for
left motor imagery in electrode C4 (as compared to C3; pb0.01).

In the gamma-band, statistical analysis also revealed a two-way in-
teraction (F1,11=10.43, pb0.01). Only a significant difference between
ipsilateral and contralateral band power in electrode C3 (pb0.01) was
observed, whereas no such difference was present in electrode C4
(p>0.1). Following the pattern of mu- and beta-bands, gamma-band
power was significantly suppressed for right motor imagery in elec-
trode C3 (as compared to C4; pb0.01) and suppressed for leftmotor im-
agery in electrode C4 (as compared to C3; pb0.05).

Cluster analysis
For left and right motor imagery, 14 electrodes were found to signif-

icantly differ from the baseline condition in the mu-band. These elec-
trodes were clustered at scalp regions over left and right sensorimotor
cortex (compare Fig. 3A with Fig. 4A; left cluster: 4 electrodes and right
cluster: 8 electrodes; see Table 1). For the beta-band, we found the
same clusters (14 electrodes, yielding two clusters: 4 left and 8 right).
No electrodes were found to significantly differ from the baseline condi-
tion for left or right motor imagery in the gamma-band.

A repeated-measures ANOVAon the cluster LPRs showed a two-way
interaction in the mu-band (Imagery×Electrode side; F1,11=14.31,
pb0.01). Post-hoc analysis showed that in both clusters, contralateral
mu-band power significantly differed from ipsilateral mu-band power
(left cluster: pb0.01; right cluster: pb0.01; Fig. 4D). As expected, this
difference was due to a stronger suppression of mu-band power in
the left cluster for right imagery (compared to right imagery in the
right cluster; pb0.01) and a stronger suppression in the right cluster
for left imagery (compared to left imagery in the left cluster; pb0.01).
The same pattern was found in the beta-band (Imagery×Electrode side
interaction; F1,11=13.71, pb0.01), where contralateral band power sig-
nificantly differed from ipsilateral bandpower (left cluster: pb0.01; right
cluster: pb0.01). As observed in the mu-band, beta-band power was
suppressed contralaterally: in the left cluster for right imagery (as com-
pared to right imagery in the right cluster; pb0.01) and in the right clus-
ter for left imagery (as compared to left imagery in the left cluster;
pb0.01).

Source localization
During left motor imagery, mu-band power suppression was local-

ized to right premotor and primary motor cortices (F=−0.31;
Brodmann areas 4/6; peak MNI coordinates: X=35, Y=−15, Z=70)
and mu-band power enhancement to left premotor and primary
motor cortices (F=0.20; Brodmann areas 4/6; peak MNI coordinates:
X=−45, Y=−15, Z=50; see Fig. 4B, left). The opposite was found
for right motor imagery: suppression in left premotor and primary
motor cortices (F=−0.27; Brodmannareas 4/6; peakMNI coordinates:
X=−45, Y=−15, Z=50) and mu-band power enhancement in right



Fig. 4. Electrophysiological results for left/right hand motor imagery. A, Statistical scalp maps for left and right motor imagery showing the location of electrodes that significantly
differ from the baseline condition in the mu-band (8–13 Hz). Blue indicates power suppression with respect to baseline, red indicates activation with respect to baseline. B, Inverse
solutions of lateralized motor imagery periods reveal sensorimotor mu-band modulation in the form of contralateral suppression and ipsilateral activation. C, Log mu-band power
(mean±SEM) for left and right motor imagery at electrode C3 and electrode C4 and D, log mu-band power (mean±SEM) in the left and right electrode clusters (4 electrodes left;
8 right) showed significant differences across imagery side (left/right) and hemisphere (left/right).
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premotor and primary motor cortices (F=0.25; Brodmann areas 4/6;
peak MNI coordinates: X=40, Y=−10, Z=65; see Fig. 4B, right).

Contralateral beta-band suppression was found for both left and
right motor imagery and was centered in precentral gyrus, extending
from premotor to parietal areas (left imagery: F=−0.08; Brodmann
area 6; peak MNI coordinates: X=30, Y=−15, Z=50; right imagery:
F=−0.07; Brodmann area 6; peakMNI coordinates: X=−35, Y=−5,
Z=45); ipsilateral enhancement was also found for both left and right
imagery and was focused at the middle frontal gyrus extending from
premotor to parietal regions (left imagery: F=−0.06; Brodmann area
6; peak MNI coordinates: X=−35, Y=−5, Z=60; right imagery:
F=−0.08; Brodmann area 6; peak MNI coordinates: X=35, Y=0,
Z=65).

Spatial and spectral overlap between ownership and motor imagery

These results suggest that lateralized motor imagery as well as il-
lusory hand ownership is reflected by mu-band oscillations in senso-
rimotor cortex, including premotor and posterior parietal cortices. To
further investigate this finding, we looked at the spectral profile
44
across subjects for ownership and motor imagery, contrasting peak
power responses in the frequency domain and further investigated
the anatomical overlap between the two sets of activations at the
scalp and inverse solution levels.

This analysis revealed that the spectral profile of mu-suppressionwas
the same for motor imagery and illusory ownership as tested here; by
contrasting the per-subject peak spectral power in the left hemisphere,
we found no significant difference between peak power frequency during
illusory ownership (10.0±0.42 Hz; mean±SEM) and motor imagery
(9.6±0.36 Hz; p>0.05). Moreover, no peak power response difference
was observed in the right hemisphere between these two processes
(ownership: 9.7±0.3 Hz; motor imagery: 10.1±0.3 Hz; p>0.05).

Concerning spatial overlap at the scalp level, 6 of 8 (mean: 75%) of the
significant electrodes found in the cluster analysis for illusory ownership
overlappedwith significant electrodes found during motor imagery (full
summary in Table 3). In Fig. 5, the inverse solutions for illusory hand
ownership, right hand imagery, and left hand imagery are overlaid,
showing strong spatial overlap in voxel space (mean: 86.9%; percentage
overlap for illusory ownership and motor imagery). Computing overlap
for each experimental condition showed that the illusion condition led
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to the strongest overlapwithmotor imagery (mean across hemispheres:
89%) as compared to the body asynchronous and object synchronous
conditions (mean across hemispheres: 78% and 72%, respectively). The
weakest overlapwas found for the object-asynchronous condition (49%).

Discussion

Here we induced and manipulated systematic changes in illusory
handownership for two virtual hands using a fully automated setup com-
bining tactile stimulation, virtual reality and electrical neuroimaging.
Mu-band activity, but not beta or gamma-band activity, reflected illusory
hand ownership and these changes were localized to fronto-parietal cor-
tex. These data provide novel insights into the brainmechanisms of body
ownership and related aspects of bodily self-consciousness, and highlight
the potential of combining high-resolution EEGwith virtual reality setups
and automatized stimulation protocols for systematic, reproducible stim-
ulus presentation in neuroscience (i.e. Bohil et al., 2011; Lenggenhager
et al., 2011; Slater et al., 2008). Mu-band activity in highly similar regions
was alsomodulated during handmotor imagery. Although premotor and
posterior parietal cortices have been involved in illusory hand ownership
and motor imagery respectively, the present study is the first to show
common mechanisms of these two processes in these regions and in
the mu band, within the same subjects.

Hand ownership as studied in the RHI has been shown to be sen-
sitive to various parameters including visuo-tactile stroke duration
(Rohde et al., 2011; Tsakiris and Haggard, 2005), distance between
proprioceptive and visual hand position (Lloyd, 2007), and visual
hand posture (Costantini and Haggard, 2007). In the large majority
of these studies, the experimenter applied the visuo-tactile stroking
manually (but see also Schütz-Bosbach et al., 2009) and to one hand.
Here we describe an automatized and programmed RHI setup that
makes the different stimulation-related parameters explicit and re-
producible across the different visuo-vibratory conditions. These
well-defined spatio-temporal parameters should facilitate the com-
parison and development of future behavioral and neuroimaging
studies related to illusory hand ownership, for instance to those
that have already been applied in the field of neuro-prosthetics
(Marasco et al., 2011). Moreover, an automated RHI setup overcomes
previous experimental constraints as it allowed us, for instance, to si-
multaneously apply visuo-tactile stimulation to both hands. Using
this novel set-up, we have shown that comparable effects can be
achieved when using automatized visuo-tactile stimulation in an
immersive virtual reality scenario with virtual hands projecting
from one's shoulders in stereo vision.

Concerning illusory referral of touch (questions 1 and 2), our setup
was effective and induced strong illusions of touch thatwere dependent
on the synchrony of stroking. Yet, thiswas not found to be body-specific
Table 3
Anatomical overlap between illusory ownership and motor imagery. Illusory owner-
ship data (illusion condition) is spatially compared to motor imagery (see Materials
and methods section). Percentage overlap is quantified separately in the left and
right hemisphere for significant, mu-band modulated scalp electrodes and voxels.
Top half: The number of overlapping scalp electrodes (from left and right sensorimotor
electrode clusters as defined in Table 1) between illusory hand ownership and motor
imagery of hands. Bottom half: The number of overlapping voxels (from inverse solu-
tion contrasts; see Results section for voxel coordinates).

Imagery with ownership Ownership with imagery

Scalp clusters (electrodes)
Left hemisphere 3 of 4

(75%)
3 of 4
(75%)

Right hemisphere 3 of 4
(75%)

3 of 8
(38%)

Source generators (voxels)
Left hemisphere 198 of 201

(98.5%)
198 of 367
(54%)

Right hemisphere 258 of 324
(79.6%)

258 of 336
(76.8%)
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(as in Armel and Ramachandran, 2003; Lenggenhager et al., 2007) and
could in the present study be due to the fact that the non-body objects
were similar in size and form to the hands (for discussion see Tsakiris,
et al., 2009).We also note thatmany of the aforementioned RHI studies
(e.g. Botvinick and Cohen, 1998; Ehrsson et al., 2004; Tsakiris and
Haggard, 2005) did not collect self-reports for non-body control objects.
Concerning illusory hand ownership (item 3), the present self-reports
provide evidence that such changes can be induced in a body-specific
and synchrony-dependent fashion with our automated setup (see also
Slater et al., 2008). We observed similar effects also for illusory drift in
hand position (question 4). Accordingly, the present questionnaire data
extend and complement earlier work that has studied illusory owner-
ship over virtual hands presented on a distanced projection screen
(Slater et al., 2008), on a monitor (Hägni et al., 2008), or via video-
projector (Ijsselsteijn et al., 2006) as well as more traditional RHI studies
(Botvinick and Cohen, 1998; Tsakiris and Haggard, 2005).
Fronto-parietal regions reflect ownership

Previous neuroimaging work not only revealed the prominent in-
volvement of premotor and intraparietal cortices in illusory hand
ownership, but also implicated other brain regions such as primary
somatosensory cortex, insular cortex, anterior cingulate cortex, and
the cerebellum (Ehrsson et al., 2004, 2005, 2007; Lloyd et al., 2006;
Tsakiris et al., 2007; Zeller et al., 2011). The present inverse solution
data link illusory hand ownership to bilateral premotor and posterior
parietal cortices (Ehrsson et al., 2004, 2005, 2007) as well as the
postcentral gyrus (Ehrsson et al., 2005; Lloyd et al., 2006; Schaefer
et al., 2006a, 2006b; Tsakiris et al., 2007; see also Schaefer et al.,
2007).

Concerning the lateralization of brain activation, our data suggest a
predominant involvement of the right fronto-parietal cortex. This is dif-
ficult to compare with prior neuroimaging studies on the RHI as these
have adopted a wide range of tactile stimulation protocols. Most au-
thors manually applied visuo-tactile stroking either unilaterally to the
right (Costantini and Haggard, 2007; Ehrsson et al., 2004, 2005, 2007;
Lloyd, 2007; Lloyd et al., 2006; Tsakiris et al., 2007), or unilaterally to
the left dorsum and fingers of the hand (Botvinick and Cohen, 1998;
Kanayama et al., 2007, 2009; Schaefer et al., 2006a, 2006b; Tsakiris
and Haggard, 2005). We extended the diversity of the employed RHI
protocols and stimulated the palmbilaterally in an automatized fashion,
confirming and extending previous findings on illusory hand ownership.
Furthermore, these different stimulation protocols resulted in distributed,
but partially overlapping patterns of brain activity associatedwith illusory
hand ownership. In previous reports, unilateral visuo-tactile stroking led
to brain activity contralateral (Lloyd et al., 2006; Schaefer et al., 2006a,
2006b; Tsakiris et al., 2007), bilateral (Ehrsson et al., 2004, 2005, 2007;
Lloyd et al., 2006; Press et al., 2008), or ipsilateralwith respect to the stim-
ulated hand (Lloyd et al., 2006; Tsakiris et al., 2007). Using EEG source
analysis and bilateral visuo-tactile stimulation, we observed activity in bi-
lateral fronto-parietal regions. Despite the bilateral pattern of activation at
the level of the inverse solution, however, statistical analyses at the single
electrode and cluster levels only revealed significant effects over right
fronto-parietal regions (whereas the same analysis was not significant
at C3 or the left cluster). The present findings are therefore in favor of a
selective or predominant right hemispheric involvement in illusory
hand ownership and are consistent with a behavioral study reporting
stronger illusory ownership in the left hand as opposed to the right
hand (Ocklenburg et al., 2010). This right lateralization of handownership
is further supported by the prevalence of right-hemispheric lesions lead-
ing to the neuropsychological condition of somatoparaphrenia, during
which patients report abnormal ownership for their left contralesional
limb (for a review see Vallar and Ronchi, 2009; Karnath and Baier,
2010). Future research should investigate differences between unilateral
and bilateral visuo-tactile stimulations as well as differences between



Fig. 5. Overlap between illusory hand ownership and motor imagery. Anatomical overlap for mu-band suppression was based on the inverse solution analysis. Side and top views of
inverse solutions (compare Figs. 3D and 4B), showing strong anatomical overlap of supra-threshold voxels (F-ratiob1.75) corresponding to mu-band suppression during the illu-
sion condition and left and right motor imagery.

225N. Evans, O. Blanke / NeuroImage 64 (2013) 216–228
manually versus automated visuo-tactile stimulation and how these in-
fluence the recruitment of right versus left fronto-parietal cortex.

Previous clinical studies using overlap analysis in stroke patients
also suggested that fronto-parietal damage in insular cortex could be
responsible for variable dysfunctions in limb ownership including
somatoparaphrenia (e.g. Karnath and Baier, 2010). Such an implication
of the insula has also been found for illusory hand ownership by experi-
mentally manipulating visuo-tactile information in healthy subjects
(Tsakiris et al., 2007), although the insular activity in this study correlat-
ed only with implicit measures of the RHI (proprioceptive drift) and not
with subjective changes in illusory hand ownership as tested in the
present study. Although we cannot exclude that insular cortex was
also activated in the present study and may have influenced the
observed fronto-parietal EEG patterns, this is rather unlikely given our
inverse solution results and that activity in the insula can be detected
with EEG methods (Mulert et al., 2003).

Electrophysiology of ownership

The present frequency analysis revealed that illusory hand own-
ership was reflected in mu-band suppression in fronto-parietal re-
gions, but not beta or gamma-band oscillations in this or other
regions. By simultaneously measuring EEG and PET/fMRI, sensori-
motor alpha and mu-band suppression has been associated with in-
creased cerebral activity (Goldman et al., 2002; Oakes et al., 2004).
Furthermore, mu-band suppression has been linked to sensorimotor
processing (Pineda, 2005), such as action execution and observation
(Gastaut, 1952), tactile stimulation (Pfurtscheller, 1981), and ob-
served tactile stimulation of others (Cheyne et al., 2003). Here, we
foundmu-band activity to distinguish between the illusion condition
and the three control conditions. Namely, the illusion condition led
to less mu-band suppression than the control conditions. We thus
found greater activation of fronto-parietal cortex during both
non-body and the asynchronous body conditions, concordant with previ-
ous EEG and PET data on illusory hand ownership (Lenggenhager et al.,
2011; Tsakiris et al., 2007). This brain activation pattern also excludes
that mere visuo-tactile matching or the sight of a virtual hand accounts
for the observed mu-band changes. Increased activation, as reflected by
greater suppression with respect to the baseline condition, has been pro-
posed to be due to greater multisensory visuo-tactile conflict (Fink et al.,
1999; Lenggenhager et al., 2011). In further agreementwith the observed
mu-band modulation in the present study, illusory hand ownership has
been associatedwith decreased cortical excitability and cortical inhibition
of the motor cortex (Schütz-Bosbach et al., 2006, 2009). Accordingly, we
argue that fronto-parietal cortex is less activated and/or inhibited during
synchronous visuo-tactile stimulation (illusion condition) as compared to
the baseline condition, where no visuo-tactile stimulation was applied.
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In a series of EEG experiments, illusion strength during the RHI
was linked to an increase in inter-electrode, phase-locking synchrony
in the gamma-band over parietal cortex (Kanayama et al., 2007, 2009).
Though the present data mainly point to a close association of illusory
hand ownership with changes in mu oscillations, our data are also in
partial agreement with the data by Kanayama and colleagues. We
found amain effect of visuo-tactile synchrony over central scalp regions
(electrode C3, left cluster) that was reflected by beta-band suppression
and an increase in gamma-band activity. Kanayama et al. (2007)
reported gamma changes to bemaximal over the central-parietal region
(i.e. electrode Pz). However, since these authors were mainly interested
in crossmodal synchrony effects during the RHI, they restricted their
analysis to high-beta and low-gamma bands (20–100 Hz); frequency
bands known to be associated with bimodal integration (for a review,
see Calvert and Thesen, 2004). As such, no direct comparison can be
made with our results that show illusory hand ownership to be selec-
tively associated with mu-band power suppression. We note, however,
that in contrast to these authors, our data do not suggest that beta or
gamma-band activity is related to illusory hand ownership, because ac-
tivity changes in these bands did not reflect illusory hand ownership
depending on our experimental factors of stroking synchrony and the
sight of virtual hands or objects. Importantly, visuo-tactile stimulation
in these previous studies by Kanayama et al. (2007, 2009) was always
performed on body-like objects, i.e. no object control conditions were
carried out to test for body specificity of synchrony-related changes in
hand ownership. We also note that the collected subjective reports in
the two studies by Kanayama and colleagues suggest that most partici-
pants did not experience illusory ownership within their experimental
setting, whereas in the present experimental setup, illusory ownership
was significantly modulated. We thus suggest that these earlier EEG re-
sults represent a low-level effect of receiving bimodal (visuo-tactile)
stimulation in a synchronous or asynchronous manner, rather than illu-
sory hand ownership. Such comparisons, however, ought to be made
cautiously, as the experimental setup and paradigm differ substantially
from the current study.

Shared spectral and anatomical mechanisms between motor imagery
and ownership

Our motor imagery results follow classical electrophysiological re-
sponses over sensorimotor cortex (Pfurtscheller and Neuper, 1997;
Neuper et al., 2006). These are characterized by contralateral mu- and
beta-band desynchronization (suppression) and ipsilateral mu- and
beta-band synchronization (enhancement) and were found here at
both the level of single electrode and cluster analyses. The application
of a linear, distributed inverse solution localized these changes to contra-
lateral and ipsilateral fronto-parietal cortex including premotor and
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posterior parietal cortices as well as the postcentral gyrus. These regions
have been involved in a number of studies in motor imagery (see re-
views from Grèzes and Decety, 2001; Munzert et al., 2009). Several stud-
ies using neuroimaging (Kosslyn et al., 2001), transcranial magnetic
stimulation (Ganis et al., 2000), or clinical investigations (Sirigu et al.,
1996) showed thatmotor imagery shares neuralmechanismswithmove-
ment planning (Decety et al., 1989) and movement execution (Gerardin
et al., 2000; Parsons et al., 1995), in particular in premotor cortex (e.g.
Ionta et al., 2010) and parietal cortex (e.g. Overney and Blanke, 2009). Ac-
tivity in both the inferior parietal cortex (Wolbers et al., 2003) and the
premotor cortex (de Lange et al., 2006; Malouin et al., 2003) increases
as a function of imagery demand. Of relevance for the present study,
premotor cortex and posterior parietal cortex are activated in the RHI
(Ehrsson et al., 2004, 2005) and activation in premotor cortex has been
found to correlate with illusion strength. Moreover, RHI andmotor imag-
ery have been shown to depend on multisensory mechanisms, including
vision and proprioceptive signals (Botvinick and Cohen, 1998; Ionta and
Blanke, 2009; Ionta et al., 2012; Lloyd, 2007) and changes in illusory
hand ownership alter the speed of motor imagery (Ionta et al., 2012).
To our knowledge, our results show for the first time at the neural level
a strong anatomical overlap between illusory hand ownership and hand
motor imagery in the same subjects showing that common structures
are recruited for both processes. That is, the activation changes due to
motor imagery activated to a large extent the same regions that were
modulated by illusory hand ownership with the former being somewhat
morewidespread than the latter. This overlapwasmaximal during the il-
lusion condition andminimal during asynchronous visuo-tactile stimula-
tion during the non-body object condition.

Common brain mechanisms between hand ownership and hand
motor imagery were further confirmed using frequency analysis. Thus,
concerning the involved frequency bands, bothmotor imagery and illu-
sory hand ownership were associatedwithmu-bandmodulation. How-
ever, motor imagery was characterized by contralateral mu- and
beta-band desynchronization in fronto-parietal cortex (suppression;
i.e. Pfurtscheller and Neuper, 1997; Pfurtscheller et al., 1997b), whereas
our illusory hand ownership manipulation was characterized by
mu-band desynchronization, especially in the right fronto-parietal cor-
tex, that was body-specific and depended on visuo-tactile stimulation.
These frequency data suggest that hand motor imagery and illusory
hand ownership rely on similar electrophysiological mechanisms in
fronto-parietal cortex, while partly differing in their spectral signatures.

There are several limitations to the present study. We note that
the present experiment was designed as a precursor to future work
investigating the impact of illusory ownership on BCI performance
involving bilateral presentation of the visual hands during unilateral
motor imagery. This was one of the reasons why we decided to in-
duce ownership bilaterally in the present study, measuring the spa-
tial and spectral overlap of illusory ownership and motor imagery
by comparing bilateral RHI data against a combination of two unilat-
eral motor imagery data sets. This constraint may have been a limita-
tion concerning the present overlap analysis, as recruited brain
structures and overlap may be different from those described here
if unilateral RHI data are compared with unilateral motor imagery
(or if bilateral RHI data are compared with bilateral hand motor
imagery).

Also, in the present study participants saw static virtual hands while
performingmotor imagery and this may have interferedwithmotor im-
agery mechanisms due to incongruency between the imagined move-
ment and the static virtual hands. Recent neuroimaging evidence has
also suggested that providing visual postural consequences congruent
with the motor imagery strategy may enhance corticospinal activity in
M1 (Mercier et al., 2008). Given this, future studiesmay additionallyma-
nipulate the visual feedback during motor imagery to investigate the ef-
fects of non-stationary visual feedback on brain mechanisms of motor
imagery aswell as the sharedmechanisms of the RHI andmotor imagery.
Furthermore, collection of additional behavioral measures of motor
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imagery performance could allow for comparisons between the strength
of illusory ownership and imagery ability. Further work is needed to in-
vestigate and compare the brain mechanisms of unilateral and bilateral
hand ownership and motor imagery.

Collectively, these anatomical and spectral data reveal that motor im-
agery in fronto-parietal cortex shares neural mechanisms not only with
several different motor-related aspects such as movement execution
andmovement planning, but alsowithmultisensorymechanisms related
to illusory hand ownership. It has been speculated that illusory owner-
ship over virtual and prosthetic limbs may benefit neuroprosthetics and
neuro-rehabilitation (Ehrsson et al., 2008;Marasco et al., 2011). The pres-
ent data show that the computer-controlled induction of handownership
alters – at least partly – the same fronto-parietal oscillations that can be
used in non-invasive brain computer interfaces. These approaches
have utilized motor imagery for motor control via online exploitation
of spectral features from themu- and beta-bands (8–26 Hz) over senso-
rimotor cortex (Lebedev and Nicolelis, 2006; Millán et al., 2010;
Pfurtscheller and Neuper, 2001; Pfurtscheller et al., 1997b; Wolpaw
andMcFarland, 2004). Based on the present findings, we argue that au-
tomatized illusory hand ownership may be used to guide or improve
control of external devices including robotic arms using non-invasive
brain computer interface technology as well as to control prosthetic
arms that are interfaced with the peripheral nervous system (Marasco
et al., 2011; Navarro et al., 2005).
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We performed an informal pilot study to verify that our automated induction of the 

RHI generates comparable illusory effects to previous RHI setups (e.g. Botvinick 
& Cohen, 1998; Tsakiris & Haggard, 2005; Slater et al., 2008).  

Pilot Methods 
Participants 

15 healthy, right-handed subjects (8 females; ages: 19-29 years, mean±SD: 24.7 

± 3.2 years) were recruited and paid for their voluntary participation. All 

participants had normal or corrected-to-normal vision and gave informed consent 

before being included in the study. The study was undertaken in accordance with 

the ethical standards as defined in the Declaration of Helsinki and was approved 
by the local ethics research committee at UNIL. 

Visual and Tactile Stimuli 

Visual and tactile stimuli were applied as in the main experiments (see Materials 

and Methods). In contrast to the main experiments, only the left hand was shown 

in the virtual scene and the vibration motors were affixed in a line to the 
participantsʼ left index finger. 

Experimental Apparatus 

Participants were seated in an Ascension Reactor2 motion capture area (Inition, 

London, UK) in a fixed chair ~10cm in front of a two-tiered table. Participants 

were instructed to rest their left arm on a foam cushion located on the lower tier 

of the table. A distance of ~15 cm separated the two tiers of the table, providing 

sufficient space for the left arm to remain untouched by the upper tier. The upper 

tier of the table was covered with a black cloth. To ensure head stability and a 

stable virtual scene, the head was restrained with a chin rest. The HMD was 

individually fitted to each subject and fully blocked their vision of the table in front 

of them. To prevent any external auditory cues, participants listened to white 
noise through a set of headphones. 
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Procedure 

The participantʼs real left arm was placed to the left of the visual (virtual) arm (15 

cm separation). The location of the left index finger in this calibrated position was 

marked and recorded using a motion capture marker. The top tier of the table 

was then placed over the real left arm and a second motion capture marker was 

positioned on the upper tier to the right of the participant such that the participant 

could guide it with his or her right hand. The subjects were instructed to relax 
their left arm and to refrain from any type of movement. 

The motion capture area was used to measure the position of the perceived hand 

position in a semi-automated fashion. Two active, infrared motion capture 

markers were used to track the difference between the perceived finger position 
and real position of the tip of the left index finger (proprioceptive drift).  

Experimental Design 

The experiment was divided into two experimental conditions: synchronous and 

asynchronous visuo-tactile stimulation, as defined in the main text (see Methods 

and Materials). Each experimental condition was given in a block of eight trials 

(20s each) followed by a hand localization resulting in eight localizations of 

perceived hand position per condition.  

Each trial proceeded as follows: participants were asked to focus on the virtual 

hand in the virtual scene. For 20s, the participant received visuo-tactile stroking 

according to the experimental condition. After this 20s period, the screen turned 

black and an auditory cue was provided to signal the localization phase. With 

their right hand, participants were instructed to slide a motion capture marker 

along the surface of the upper tier of the table until the center of the marker was 

directly above the perceived location of the tip of left index finger. After verbally 

confirming the hand localization, subjects were instructed to displace the motion 
capture marker back to an arbitrary position on the right side of the table.  

Proprioceptive Drift and Subjective Reports 
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Proprioceptive drift was measured by taking the distance in the x-plane between 

two motion capture markers: one at the perceived hand position, as placed by the 

participant, and the second at the tip of the left index finger. At the end of each 

eight-trial condition block, the strength of the subjective experience of the RHI 

was gauged with a questionnaire referring to the entire condition block of eight 

trials. The questionnaire was composed of the nine questions from the original 

RHI questionnaire adopted to the virtual environment (Botnivick & Cohen, 1998; 
Slater et al., 2008).  

 

Pilot Results 

Questionnaire 

Since only two experimental conditions were tested in this pilot experiment, we 

tested for differences in questionnaire ratings between synchronous and 

asynchronous stimulation using non-parametric, Wilcoxon matched pair tests for 

each question (Bonferonni corrected for multiple comparisons). These analyses 

revealed a significant increase in reported scores for synchronous as compared 

to asynchronous visuo-tactile stimulation for Q1 (synch: 6.33±0.32; asynch: 

2.40±0.34; mean±SEM), Q2 (synch: 4.0±0.57; asynch: 2.07±0.44) and Q3 

(synch: 4.13±0.50; asynch: 2.20±0.41; all p < 0.005). No difference was found 

between the synchronous and asynchronous conditions for questions 4-9 (all p > 

0.05). These results are consistent with reported illusory experiences in standard 

RHI setups (Botvinick & Cohen, 1998; Tsakiris & Haggard, 2005), in which 

synchronous visuo-tactile stimulation leads to perceptual changes in perceived 

location of touch (questions 1-2) and illusory ownership of the fake hand 

(question 3). Questions 4-9 are often regarded as control questions as they 

generally remain unaffected by the experimental manipulation of visuo-tactile 
synchrony (e.g. Slater et al., 2008). 
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Proprioceptive Drift 

To measure the distance between the perceived and actual hand position 

(proprioceptive drift), we took the average perceived location of the left index 

finger across the eight proprioceptive judgments in both the synchronous and 

asynchronous conditions. For the synchronous visuo-tactile stroking condition, 

the drift in perceived hand location toward the position of the virtual hand (2.2 ± 

1.8 cm; mean±SEM) was significantly larger as compared to asynchronous 

condition (0.1 ± 1.6 cm; mean±SEM) (p < 0.05, one-tailed paired t-test), 

consistent with previous RHI setups (Botvinick & Cohen, 1998; Tsakiris & 
Haggard, 2005; Slater et al., 2008).   
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Supplemental Figures 

Supplemental Figure S1. 
Self-report scores for all items of the questionnaire. Mean questionnaire scores (error 
bars SEM) probing illusory experiences during visuo-tactile stimulation (see Methods 
and Materials). In Figure 2, Question 3 (illusory ownership) is highlighted. * indicates a 
significant difference between experimental conditions (p < 0.05; Wilcoxon matched 
pairs test; corrected). 

55



Supplemental References 

Botvinick, M., & Cohen, J. (1998). Rubber hands 'feel' touch that eyes see. 
Nature , 391 (6669), 756. 

Slater, M., Perez-Marcos, D., Ehrsson, H., & Sanchez-Vives, M. (2008). Towards 
a digital body: the virtual arm illusion. Front Hum Neurosci, 2, 6. 

Tsakiris, M., & Haggard, P. (2005). The Rubber Hand Illusion Revisited: 
Visuotactile Integration and Self-Attribution. J Exp Psychol Hum Percept Perform, 
31 (1), 80-91. 

56



COGNITIVE NEUROPROSTHETICS: BODY OWNERSHIP AND AGENCY FOR BRAIN-MACHINE ACTIONS 
 

	
  

 
 
 
 
 
 
 

3.2 

 
Illusory ownership alters decoding  

performance in a motor imagery based  

brain-machine interface   

 
  

57



Illusory hand ownership alters decoding performance in 
a motor imagery based brain-machine interface 

Nathan Evans1,2, Olaf Blanke1,2,3 

1 Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de 
Lausanne, Switzerland 

2  Laboratory of Cognitive Neuroscience, Brain Mind Institute, School of Life Sciences, Ecole 
  Polytechnique Fédérale de Lausanne, Switzerland 

3  Department of Neurology, University Hospital Geneva, Switzerland 

Keywords: hand ownership, motor imagery, brain-machine interface, single- 
trial decoding

Corresponding Author:  
Olaf Blanke 
Bertarelli Foundation Chair in Cognitive Neuroprosthetics 
Faculty of Life Sciences 
Ecole Polytechnique Fédérale de Lausanne 
Station 19 
CH – 1015 Lausanne 
Tel: +41 21 693 69 21 
E-mail: olaf.blanke@epfl.ch 
E-mail: olaf.blanke@epfl.ch 

58



Abstract 

Recent work in cognitive neuroscience has demonstrated that providing coherent 

multisensory stimulation to real and fake limbs can induce the illusory sensation 

that the artificial limb is oneʼs own (ownership). We recently showed that illusory 

hand ownership leads to similar electrophysiological changes over fronto-parietal 

cortex as those associated with unilateral motor imagery of the hand, a 

commonly used paradigm in brain-machine interfaces (BMI; Evans & Blanke, 

2012). These findings suggest that non-invasive BMI performance might be 

influenced by the application of multimodal feedback leading to illusory 

ownership. To test this, here we performed offline single-trial decoding of left 

versus right hand imagery while manipulating hand ownership with visuo-tactile 

stimulation on participantsʼ real (felt) and virtual (seen) hands. Our results show 

illusory ownership to lead to an increase decoding performance with respect to 

incoherent visuo-tactile stimulation conditions. However, compared with a motor 

imagery condition without visuo-tactile stimulation and ownership modulation, we 

observed a general reduction in decoding performance during tactile stimulation. 

We discuss these results in their contribution to the ongoing quest towards the 

design of multisensory neuroprosthetic devices that ʻfeelʼ like real limbs.
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Introduction 

Brain-machine interfaces (BMIs) use advanced signal processing and machine 

learning techniques in combination with a contemporary neuroanatomical and 

neurophysiological understanding of brain processing in order to extract, decode, 

and translate intent in real-time from ongoing brain activity (Nicolelis, 2003; 

Wolpaw, 2007). Recent advances in neurophysiology and signal processing have 

led to BMIs demonstrating potential for the restoration of upper limb function in 

non-human primates (Velliste et al., 2008; Carmena et al., 2003; Moritz et al., 

2008; Serruya et al., 2002) and humans (Hochberg et al., 2006, 2012). Despite 

these promising results, there remain important limitations in current BMI 

systems, in particular, the diminished quality of motor control for these devices as 

compared to healthy limbs (Hochberg et al., 2006). As it is well known that 

human cognition and perception is largely shaped by multisensory experience 

(Ghazanfar and Schroeder, 2006), and that reliable motor control requires 

multimodal sensory information (van Beers et al., 1999; Sober and Sabes, 2005), 

it is hypothesized that the present deficiencies in BMI control may be due to a 

lack of multisensory feedback in these devices (Birbaumer et al., 1999; Abbott, 

2006; Hatsopoulos and Donoghue, 2009).  

Research addressing this issue has recently embedded multimodal sensory 

feedback into invasive BMIs for monkeys. After learning to control a virtual arm 

with voluntary modulation of activity in primary motor cortex, monkeys were 

provided direct electrical stimulation to primary somatosensory cortex to simulate 

artificial touch sensation for objects that the virtual arm encountered (OʼDoherty 

et al., 2011). Importantly, when performing an active exploration task with a 

virtual arm combined with artificial touch sensation, monkeys behaved similarly to 

how they would with their actual limbs. This was taken as evidence that the 

multisensory nature of the BMI led to embodiment of the virtual limb. In a similar 
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paradigm, monkeys were trained to control a visual cursor with motor cortex 

activity while their arm was passively displaced to follow the cursor trajectory 

(Suminski et al., 2010). Contrasting BMI control during pure-visual feedback 

against a condition where visuo-proprioceptive feedback was provided, the 

authors demonstrated that BMI performance was enhanced by multimodal 

feedback. They further showed that performance was selectively modulated in 

that it depended on the spatial congruence across the sensory modalities. 

Collectively, these first studies show the potential to improved BMI control via 
application of coherent multimodal sensory feedback. 

Progress in research using invasive BMIs in monkeys faces several practical 

issues including long-term stability, limited sample sizes, and restrictive, clinical 

experimental settings (Lebedev and Nicolelis, 2006). To circumvent these 

concerns, an alternative line of research has investigated the potential of 

decoding intent with non-invasive neuroimaging techniques (Pfurtscheller et al., 

1997; Pfurtscheller et al., 2006; Millan et al., 2010; Wolpaw et al., 2002). Though 

most non-invasive BMIs exclusively provide unimodal visual feedback, some 

research has also addressed sensory feedback substitution, replacing the visual 

modality with auditory (Furdea et al., 2009; Hinterberger et al., 2004; Nijboer et 

al., 2008), vibrotactile (Chatterjee et al, 2007; Brouwer and van Erp, 2010; 

Cincotti et al., 2007) or proprioceptive (Gomez-Rodriguez et al., 2010) sensory 

feedback. Multimodal, non-invasive BMI systems remain relatively unexplored 

and have led to mixed results (Wagner et al., 2012). Several studies have 

investigated combined visuo-auditory feedback, reporting a multimodal 

enhancement of BMI performance in P300 paradigms (Belitski et al, 2011; 

Klobassa et al, 2009), but a decrease in performance for multimodal versus 

unimodal regulation of slow cortical potentials (Hinterberger et al., 2004). Finally, 

mirroring the above-described results in monkeys, recent work has shown that 

providing visuo-proprioceptive feedback to the hand via a robotic exoskeleton 
can improve BMI performance (Ramos-Murguialday et al., 2012). 
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One potential avenue for further improvement of control and sensation over BMIs 

and neuroprosthetic devices may come from paradigms developed in the context 

of the cognitive neuroscience of bodily self-consciousness. Empirical studies of 

the multisensory mechanisms underpinning the sense that the body and its parts 

belong to us and not another (ownership) have emphasized the importance of 

proper integration of visual, tactile and proprioceptive signals (Botvinick, 2004; 

Botvinick and Cohen, 1998; Tsakiris and Haggard, 2005; Ehrsson et al., 2004). 

The most often-used paradigm to experimentally study ownership for upper limbs 

is the so-called rubber hand illusion (RHI). In this perceptual illusion, participants 

fixate on an artificial hand (visual cue) being stroked by a paintbrush in synchrony 

with stroking on their own corresponding and occluded hand (tactile cue) 

(Botvinick and Cohen, 1998). The visuo-tactile cues provided to the artificial and 

real hands lead to an alteration in bodily experience and result in the feeling that 

touch sensation is transferred to the artificial hand and that the artificial hand is 

oneʼs own hand (as measured by subjective questionnaires). This feeling of 

illusory ownership is generally associated with a recalibration of the perceived 

position of the real hand, mislocalized toward the artificial hand. The illusion is 

abolished if the visuo-tactile cues are spatially or temporally incongruent, or if 

non-body control objects are used in place of an artificial hand (Botvinick & 

Cohen, 1998; Tsakiris & Haggard, 2005; review in Makin et al., 2008; Blanke, 

2012). 

Recent work has indicated that the RHI can be used on amputees to induce 

illusory ownership over peripheral prosthetic devices (Marasco et al., 2011; 

Ehrsson et al., 2008). Linking these paradigms to research in non-invasive BMIs, 

we recently showed that illusory hand ownership leads to similar 

electrophysiological changes over bilateral fronto-parietal cortex as those 

associated with unilateral motor imagery of the hand, a commonly used paradigm 

in non-invasive BMIs (Evans & Blanke, 2012). In particular, we demonstrated 

strong anatomical and spectral overlap between these processes, primarily in the 
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mu-band (8 to 13 Hz sensorimotor oscillations) and speculated that this selective 

modulation may be of importance to BMIs, as mu- and beta-band (14 – 30 Hz) 

oscillations have been investigated with respect to imagined unilateral upper limb 

movements in non-invasive BMIs (Pfurtscheller et al., 1997; Pfurtscheller and 

Neuper. 2002; Wolpaw et al. 2002; review in Neuper et al., 2006).  

Despite the hypothesized potential for ownership modulation to influence BMI 

performance, no study to date has attempted to test BMI decoder performance 

while manipulating ownership. Here, we induced illusory ownership over two 

virtual hands by providing task-irrelevant visuo-tactile stimulation to the real and 

virtual hands while recording 64-channel electroencephalography (EEG). While 

receiving this stimulation constantly and simultaneously on both hands, 

participants performed a unilateral motor imagery task, imagining to clasp their 

left or right hand. Participants also performed the motor imagery task in 

experimental conditions where visuo-tactile stimulation was applied 

asynchronously, on non-body objects, or not at all. Using this experimental 

design, we first assess whether illusory hand ownership influences decoding 

performance in a standard BMI paradigm. Then, to better understand any 

difference in decoding performance, we explore the spectral effects on mu-band 

power of illusory ownership manipulation during motor imagery.  
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Materials and Methods 
The present study took place as a separate experimental session with the same 

participants and experimental setup as in a previous report (Evans & Blanke, 

2012), where further details regarding our automated setup can be found. 

 
Participants  
12 healthy, right-handed participants were recruited (ages 22.7 ± 4.1 mean±SD; 

3 females). All participants had normal or corrected-to-normal vision and were 

naïve motor imagery BMI users. The study was undertaken in accordance with 

the ethical standards as defined in the Declaration of Helsinki and were approved 

by the local ethics research committee at the University of Lausanne. 

 

Procedure 

Participants were seated at a table with their arms resting (palms up) on their 

legs. Head movements were restrained with a chin rest and the experiment took 

place in a darkened room. Visual stimuli were rendered in stereo on a head-

mounted display showing a virtual scene with either two virtual arms or two virtual 

non-body control objects visually projected as extending from the body and 

resting on a tabletop (projected above the participant’s physical arms by approx. 

20 cm). 

 

Four virtual spheres on each palm of the two virtual arms (or non-body control 

objects) visually represented the four vibration motors on the real hands. Visual 

“vibrations” were represented by changing the virtual motorʼs color from white to 

red and animating it to visually jitter and corresponded to physical tactile 

stimulation via four haptic vibration motors affixed in a line to each of the palms of 

the participantsʼ hands. The motors were programmed to vibrate in sequence to 

simulate a continuous, stroke-like movement in order to automate the stroking 

patterns that are generally manually applied to induce the RHI (i.e. Botvinick & 

Cohen, 1998; Ehrsson et al. 2004). In half of the participants the direction of the 
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stroking sequence was either inward, toward a centralized fixation cross and in 

half it was outward.

Synchronous visuo-tactile stimulation was defined such that visual and tactile 

vibrations occurred with no temporal delay and with spatial congruency between 

visual and tactile stimuli. Asynchronous visuo-tactile stimulation was achieved by 

inserting a random delay of 50 to 150 ms of the onset of the visual stimulation 

with respect to the onset of the tactile stimulation and randomly varied the 

direction of visual stroking while maintaining the same physical vibration 

sequence.  

Experimental design 

We previously reported that our automatized and virtual reality setup induced 

both the subjective and behavioral effects generally associated with the RHI (as 

measured by questionnaires and proprioceptive drift, respectively; Evans and 

Blanke, 2012). As in this previous study, here we manipulated the strength of 

illusory hand ownership using a 2x2 factorial design with the factors Stroking and 

Object. The Stroking factor consisted of two levels of visuo-tactile stimulation 

(synchronous and asynchronous; as defined above). The Object factor was 

composed of two levels: virtual arms or virtual non-body control objects. Two 

additional baseline conditions were recorded while participants saw virtual arms: 

one without visuo-tactile stimulation and one with just tactile stimulation (no visual 

counterpart).  

Motor imagery during visuo-tactile stimulation 

Participants focused on a central fixation cross placed between the hands/objects 

(visual angle of 37° to the left and right) while receiving visuo-tactile stimulation 

according to one of the experimental conditions. At the beginning of each trial, 

the fixation cross remained green for 500 ms, followed by a left or right arrow cue 

for 500 ms. Finally, the directional cue was replaced with a red fixation cross that 
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remained for 4.5 s. Participants were asked to imagine clasping and unclasping 

the cued hand (right or left hand; Pfurtscheller et al. 1997) as soon as they saw 

the directional cue. It is important to note that visuo-tactile stimulation was cue 

independent, that is, it was applied to both hands simultaneously and 

continuously. Each experimental block consisted of 30 randomized trials (15 left 

hand imagery, 15 right hand imagery trials) and was repeated three times, 
resulting in 90 trials.

EEG: Preprocessing 

64-channel EEG was sampled at 2048 Hz (Biosemi Inc, Amsterdam, 

Netherlands), downsampled to 512Hz, and subjected to visual inspection in the 

time and frequency domain. Electrodes with > 50 µV DC-offset were rejected. 

The mean percentage of electrodes included was 92% (59±1 electrodes; 

mean±SD). Timeframes with eye blinks and transient conductance shifts were 

marked as artifacted in a semi-automated manner (see Lenggenhager et al., 

2011; Evans & Blanke, 2012) and artifacted trials were discarded.  

EEG: Offline decoding of motor imagery 

Using a 10-fold cross-validation scheme, trials were shuffled and split into 

training and test sets for each subject and each experimental condition. Data 

from the training set was used to compute per-subject common spatial patterns 

(CSPs; Blankertz et al., 2008). Next, feature vectors were constructed by 

bandpass filtering the raw EEG (mu-band: 8 to 13 Hz and mu/beta-bands: 8 to 30 

Hz). These filtered signals were re-projected through the first three and last three 

CSPs, and log variance was computed across timeframes. Using these feature 

vectors, coefficients for a binary classifier were computed (linear fisher 

discriminant) and used on test set with the same procedure. Note that per-subject 

CSPs and classifier coefficients were computed independently to the test set. 
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Decoding performance was then computed per subject as the mean performance 
across cross validation folds.  

As low performance from naïve (untrained) non-invasive BMI users is common 

(Guger et al., 2003), most studies investigate performance in trained participants. 

To closer follow this tradition, we excluded any participants from our analyses 

that were unable to perform the task above chance (50%) in the baseline 

condition (no visuo-tactile stimulation). For the remaining participants, paired, 

two-tailed t-tests (adjusted for multiple comparisons using the Holm-Bonferroni 

correction) were used to test for differences in classification performance across 
experimental conditions. 

Visualizing Common Spatial Patterns 

We collected the first and last CSP weights (i.e. the most important weights for 

left and right imagery) for each cross validation fold, participant, and experimental 

condition and projected these per-electrode spatial weights onto the scalp in 

order to generate scalp topographies (Blankertz et al., 2008). Since CSP weights 

are of arbitrary and relative value (i.e. absolute magnitude is important), before 

averaging the CSP weights within and across participants, the weights were 

normalized for each fold, participant, and condition using a min-max 

normalization.  

EEG: Spectral analyses of motor imagery and ownership  

4.5 s of EEG data (per trial) was collected for the period immediately following 

the directional cue (total accepted epochs: 60±19 s; mean±SD per subject, per 

condition). Prior to computing power spectral densities (PSD), scalp potentials 

were re-referenced with respect to the average reference, the linear trend was 

removed, and a Hann window was applied to each epoch. PSDs were then 

computed at a 0.5 Hz resolution for each epoch with a Fast Fourier Transform 
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(Matlab, Mathworks, Natick, Massachusetts, USA) in the alpha/mu frequency 

band (8-13 Hz). Finally, we computed mean log power ratios (LPR) across all 

epochs and participants at each electrode (e.g. Oberman et al. 2005; Evans & 

Blanke, 2012). 

Differences in LPRs  

We previously showed illusory ownership and lateralized motor imagery to 

selectively modulate mu-band power in the same participants under this 

paradigm (Evans & Blanke, 2012). To investigate the electrophysiological effects 

of providing selective forms of visuo-tactile stimulation during motor imagery, we 

compared mu-band log power ratios obtained in the previous study against those 

in the present study during motor imagery. Mu-band LPRs were computed at 

electrodes C3 and C4 over central hand regions (Oberman et al., 2005; 

Pfurtscheller & Neuper, 1994).  

Next, we computed the difference between LPRs with and without motor imagery 

(i.e. during each condition in the present study versus each condition from our 

previous study). This procedure resulted in a difference of LPR at both electrodes 

C3 and C4 for both left and right motor imagery. We then collapsed the data 

further by only considering contralateral motor imagery (i.e. differences were 

computed between experimental conditions during right motor imagery for 

electrode C3, and left motor imagery for electrode C4). Finally, we collapsed 

these data into one data set corresponding differences between each 

experimental condition in the absence of, and during contralateral motor imagery. 

For each condition, the distribution of LPR differences was individually contrasted 

against 0 (i.e. no difference) using paired, two-tailed t-tests (Holm-Bonferroni 
corrected). 
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Results 

Single-trial decoding 

To test our hypothesis that ownership manipulation might selectively modulate 

decoding performance in the BMI motor imagery task, we first performed single-

trial decoding of left vs. right motor imagery using mu-band features (see 

Methods and Materials). This analysis revealed the highest classification 

performance to be in the synchronous body stroking condition (henceforth 

referred to as illusion condition; Figure 1A). In particular, average classification 

performance was found to significantly increase in the illusion condition with 

respect to asynchronous stroking on non-body objects (from 56% to 63%; P = 

0.02), and importantly, no such difference was found between the non-body 

control objects (P = 0.15). This boosting effect of the illusion condition over 

asynchronous stroking on non-body control objects was also found at the single-

subject level (7 of 9 subjects; Figure 1B). However, on average, we did not find 

the illusion condition to lead to significant performance differences when 

compared to asynchronous stroking on bodily objects or synchronous stroking on 

non-body objects (both P > 0.05), though the majority (6 of 9) of the participants 

showed an increase in decoding performance in the illusion condition versus 

asynchronous stroking on bodily objects (Figure 1C). 

 

Despite the observed decoding performance changes due to ownership 

manipulation, performance was found to be highest when participants performed 

motor imagery in the absence of visuo-tactile stimulation (Figure 1D). By 

comparing the two baseline conditions, we found the addition of tactile 

stimulation to significantly reduce performance (from 75% to 58%; P < 0.001). 

This reduction in decoding performance with respect to the baseline condition 

without tactile stimulation was also found for all other experimental conditions (all 

P < 0.003). 
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Finally, we tested decoding performance using features computed from both mu- 

and beta-bands (8 to 30 Hz) and found general, increased performance as 

compared to features computed solely in the mu-band (mean performance 

across conditions from 58% to 66%; P = 0.02). This was driven by significant 

performance increases in three conditions (asynchronous, body stroking: 56% to 

65%, P = 0.01; no visuo-tactile baseline: 75% to 80%, P = 0.03; tactile-only 

baseline: 58% to 67%, P = 0.03). However, the performance boost observed in 

the illusion condition using solely mu-band features was abolished using these 

wider spectral features (illusion condition vs. asynchronous stroking on non-body 
objects; P > 0.05).  

Mu-band oscillations during motor imagery and visuo-tactile stimulation 

By comparing mu-band LPRs for each experimental condition during motor 

imagery to the same conditions in the same participants during passive 

stimulation (see Methods), we found motor imagery to substantially alter mu-

band oscillations in all conditions except for the illusion condition. In particular, by 

computing a difference in LPR ratio for each condition and testing this distribution 

of differences against 0, we found significant changes mu-band LPRs for all 

conditions except the illusion condition (Figure 2A). 

Relevant spatial features for decoding motor imagery during illusory ownership 

Finally, to evaluate the relative contribution of electrodes to mu-band 

discrimination of left versus right motor imagery during the illusion condition, we 

projected the group CSP weights as scalp topographies. This analysis revealed 

sensorimotor regions contralateral to the imagery side to be of most importance 

for decoding (Figure 2B), providing further independent evidence that mu-band 

oscillations over fronto-parietal regions are of import during both motor imagery 

and illusory ownership (Evans & Blanke, 2012).  
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Discussion 

Using an automated setup to induce illusory ownership over two virtual hands 

while participants imagined to move their left or right hand, we found illusory 

ownership to significantly alter offline, single-trial decoding performance. In 

particular, decoding performance for left versus right hand was increased during 

synchronous stroking on bodily objects as compared to asynchronous stroking on 

virtual non-body objects. Several recent studies have also shown that providing 

multimodal, visuo-proprioceptive feedback can boost BMI performance over 

unimodal visual feedback in invasive BMIs for monkeys (Suminski et al., 2010) 

and for non-invasive BMIs in humans (Ramos-Murguialday et al., 2012). 

Importantly, these studies stress that performance is only increased if visual and 

proprioceptive cues are spatially and temporally coherent, and are thus 

compatible with the present findings that show selective increases depending on 

visuo-tactile spatial and temporal coherence.  

 

However, unlike in previous RHI studies (Botvinick & Cohen, 1998; Tsakiris & 

Haggard, 2005; Tsakiris et al., 2009), we did not find performance to be 

independently influenced by visual form and synchrony of stroking. Though our 

previous studies hinted that selective modulations in the mu-band might influence 

the decoded features for a standard motor imagery task (Evans & Blanke, 2012), 

the spatial origin of these mu-band alterations and whether they can be 

distinguished on a single-trial level remains unclear. Further work is needed to 

directly link ownership-induced changes in the mu-band to anatomical substrates, 

for instance by using combined EEG-fMRI paradigms. Such insight might help 

design signal processing techniques that can better distinguish between these 

subtle multisensory conflicts at the single-trial level and given the course spatial 

resolution of scalp EEG. 

 

By directly comparing motor imagery without tactile stimulation and with tactile 

stimulation, we found a significant decrease in decoding performance due to the 
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addition of tactile stimulation. This result stands in contrast to previous reports 

demonstrating similar decoding performance for vibrotactile feedback and visual-

only feedback in motor imagery based, non-invasive BMIs (Cincotti et al., 2007; 

Chatterjee et al., 2007). However, these studies both employed unimodal 

vibrotactile feedback whereas we employed bimodal, visuo-tactile feedback. 

Closer to the present work, previous studies testing unimodal visual and auditory 

as well as bimodal visuo-auditory feedback in non-invasive BMIs did not find 

bimodal feedback to boost performance as compared to unimodal feedback 

(Hinterberger et al., 2004). These results suggest that it may be that multimodal 

feedback is detrimental to non-invasive BMI control (but see Ramos-Murguialday 

et al., 2012). 

In previous studies providing vibrotactile feedback, stimulation was provided 

either on the biceps (Chatterjee et al., 2007) or on the upper chest (Cincotti et al., 

2007) in contrast to the present study, where we vibrated the hands. Thus, the 

observed decline in performance may be that participants were unable to reliably 

perform motor imagery of the hands due to distraction from visuo-tactile 

stimulation on the same body part. Several studies have explored the interplay 

between attentional mechanisms and the neural systems supporting imagery and 

action (Johansen-Berg, 2003; Passingham, 1996; Sacco et al., 2006), but further 

research is needed to directly test the effect of sensory stimulation distraction on 

mental and motor imagery ability and attention. 

Concerning the electrophysiological effects of performing somatosensory 

stimulation during motor imagery, it has been shown that mu- and beta-band 

power is modulated by touch (Pfurtscheller, 1981; Salenius et al., 1997), the

anticipation of touch (van Ede et al., 2010), the observation of touch on others 

(Cheyne et al., 2003), as well as by motor imagery (Pfurtscheller et al., 1997).

Thus, the influence of somatosensory stimulation on mu- and beta-band features 

may impact decoding performance using spectral features from these bands. To 
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step around this technical issue, future research may rather employ interleaved 

paradigms, where tactile stimulation and decoding are not performed 

simultaneously. Such an approach may introduce additional latency, as decoding 

periods are more infrequent, so novel paradigms may need to be used such as 

rapid alternation between stimulation and decoding periods (e.g. OʼDoherty et al., 

2011) or by applying stimulation during a ʻprimingʼ period and later decoding 

(Salamin et al., 2010). 

Finally, our analysis on mu-band LPRs showed that motor imagery influences 

mu-band activity during visuo-tactile stimulation in a body-selective, synchrony-

dependent manner. Namely, mu-band power was found to be invariant to the 

addition of motor imagery. We interpret this finding as further evidence that the 

mu-band selectively encodes illusory ownership and believe this finding to be of 

importance for future work investigating real-time neural measures of ownership 

to guide neuroprosthetic control. 
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Figures 

Figure 1. Decoding performance. A) Mean classification performance across subjects 
(N=9) and cross validation folds (X=10) in the four visuo-tactile stroking conditions. 
Synchronous stroking on bodily visual objects led to an increase in performance with 
respect to asynchronous stroking on non-body control objects. No such difference was 
found between synchronous and asynchronous stroking on the control objects. B) The 
two significantly different conditions from (A) plotted at the single-subject level. 7 of 9 
participants witnessed an increase in decoding performance. C) Single subject plots for 
synchronous and asynchronous bodily stroking. 6 of 9 participants witnessed an 
increase in decoding performance, but on average (A) no difference was found. D) 
Decoding performance during the two baseline conditions: motor imagery without visuo-
tactile stimulation and motor imagery with only tactile stimulation. The addition of tactile 
stimulation to the hands led to a significant decrease in decoding performance 
(difference between black and grey bars). In all panels, * indicates P < 0.05 (two-tailed, 
paired t-test, corrected). Error bars represent standard error of the mean. 
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Figure 2. Mu-band changes during motor imagery during visuo-tactile 
stimulation. A) Mu-band log power differences between passive visuo-tactile 
stimulation (data from Evans & Blanke, 2012) and visuo-tactile stimulation during motor 
imagery for each condition. As mu-band power was found to be suppressed during 
visuo-tactile stimulation, positive differences represent a move toward an LPR of 0 (i.e. 
toward the baseline). Statistical contrasts for each condition against the 0 line (i.e. no 
difference) showed no different in the illusion condition (synchronous, body stroking) but 
that all other visuo-tactile stimulation conditions were associated with significant mu-
band differences.  B) Normalized spatial filter weights obtained from common spatial 
patterns analysis (see Methods) were projected onto the scalp for left and right motor 
imagery during the illusion condition. Note that the absolute magnitude of the weight is a 
statistically-derived indication of the importance of that electrode to the decoder, and that 
electrodes contralateral to the imagery side were of greatest importance. 
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Abstract 

When looking at our hand, we simultaneously feel it based on tactile and 

proprioceptive cues. However, seeing a fake hand being touched while our real hand 

is touched (but hidden from view), we experience the fake hand as belonging to us 

(ownership) and recalibrate our perceived hand position. Using computational 

modeling and data collected from a fully automated experimental setup, we 

extracted, on a subject-by-subject basis, the maximal distance between the real and 

fake hands (threshold) and the stimulation conditions that subjects tolerate before 

the recalibration of perceived hand position breaks down. The model predicts, and 

experiments confirm, that ownership breaks down discontinuously near this 

threshold, such that subjects sometimes perceive their hand close to the fake hand, 

and sometimes close to the real hand. By computing the limits of ownership and 

limb position perception, our model paves the way for computational approaches to 

embodiment of neuroprosthetic limbs. 
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Introduction 

One goal of neuroprosthetics1–4 is to design artificial limbs that feel and move, ideally like real 

limbs. Most research has focused on movement control of artificial limbs1,2,5, although for a limb to 

be functionally useful, one must also be able to perceive somatosensory signals from the artificial 

limb such as touch and proprioception3,4,6,7. Recently, artificial limbs have been interfaced to the 

peripheral nervous system7,8 or the somatosensory cortex9 in order to provide somatosensory 

feedback10–12. Yet, despite these achievements, many amputees continue to reject current artificial 

limbs because users must rely on visual instead of tactile and proprioceptive signals to interact with 

objects13. 

An interesting avenue for improvement of artificial limbs arises from cognitive neuroscience 

research in amputees14 and patients with related neurological conditions15, as well as in healthy 

subjects16–18. A widely used paradigm to study bodily experience and perception of one’s upper 

limb is the rubber hand illusion16 (RHI) where participants watch a fake hand being stroked in 

synchrony with stroking on their own (occluded) hand. This manipulation alters tactile perception 

and induces the illusion that touch is felt on the fake hand and that the fake hand feels like one’s 

own hand16–18.  These subjective effects are often accompanied by a shift in the perceived position 

of one’s own hand towards the fake hand (drift) as well as physiological changes19,20, which are 

absent or weaker when the stroking provided to the real hand and the fake hand is not 

synchronous16–19,21. The illusion is reduced or abolished when the fake hand does not match the 

real hand’s posture18, when the rubber hand is placed too far from the real hand22, or when the 

stroking is applied in different directions23. The potential importance of inducing body ownership 

for prosthetic limbs was recently demonstrated by showing that upper limb amputees experience an 

artificial hand as part of their own body when synchronous touches were applied to the artificial 

hand and their (occluded) stump24. These findings were extended using a robotic tactile interface 

allowing for greater stimulation control and reproducible conditions25. 

Although it has been speculated26–28 that illusory hand ownership and perceived hand position 

occur as the brain’s perceptual systems attempt to interpret the conflicting visual, tactile, and 

proprioceptive information, there is currently no computational account of the RHI and the role of 

visual, tactile, and proprioceptive stimulation parameters (e.g. duration, synchrony, and limb 

position) on illusory hand ownership and perceived hand position.  Since systematic changes in 

illusory hand ownership can also be induced in virtual environments29, we used automatized, 

machine-controlled stroking in a novel virtual-hand setup to investigate whether computational 
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modeling can account for measured drifts of perceived hand position. We show that a Bayesian 

model of causal inference can predict the conditions under which humans fuse proprioceptive with 

visual information during the RHI. Fusion does not occur if the distance between the real hand and 

the virtual hand is too large or if both hands are stimulated asynchronously for a long time. Our 

model and data suggest that, for intermediate distances between the virtual and real hand, perceived 

hand position switches discontinuously between the fused and a non-fused, proprioception-

dominated position. We argue that fusion of sensory cues from the virtual hand with those from the 

participant’s real hand is reminiscent of another case of multisensory integration, the ventriloquist 

effect, where visual and auditory signals from extrapersonal space are perceived as coming from 

one location only if the fusion of sensory information is plausible30–32 .  

Results 

In order to gain systematic control over the stimulation parameters in RHI experiments, we 

developed an automated stimulation method in a Virtual Reality environment, where the fake hand 

was presented visually on a head-mounted display (Fig. 1). Participants saw a three-dimensional 

virtual hand on the screen while the skin of their real hand (resting on a table in front of them) was 

stimulated by a set of four small electric vibrators (Fig. 1A). Tactile stimulation of the participant’s 

hand with vibration motors (Fig. 1E) was provided simultaneously with animation of lights on the 

virtual hand and induced illusory hand ownership (Fig. S1B). Illusory hand ownership was 

comparable to that described in earlier studies using experimenter-applied stroking on a physical 

rubber hand16,18,19 or on a virtual hand29. In particular, participants reported illusory ownership for 

the virtual hand (that was located at a distance of 17cm from the hidden real hand) during 

synchronous stroking in a congruent hand position (p<0.01, Post-hoc Wilcoxon matched-pairs test; 

Fig. S1), but not during asynchronous stroking or if the fake hand was in an incongruent position 

(all p>0.05). 

Going beyond traditional RHI studies, our automated setup enabled us to systematically vary, on a 

trial-by-trial basis, the distance between the virtual and real hand (visuo-proprioceptive separation) 

and the delay between tactile stimulation and visual stimulation via animations on the virtual hand 

(visuo-tactile delay, Fig. 1E). If participants were not at all influenced by the position of the seen 

virtual hand, the perceived hand position, as reported by the subjects, would be independent of the 

position of the virtual hand. Instead, the reported position exhibited a systematic drift towards the 
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virtual hand that increased with the magnitude of visuo-proprioceptive separation. We found a 

mean drift of 5±3cm  for separations from 0 to 10cm, and a mean drift of 10±5cm for separations 

of 10 to 20cm. Additionally, we found a significant correlation between drifts and visuo-

proprioceptive separation in the interval 0-20cm (F1,1446=30.16, p=4e-8), suggesting that the 

participants’ perceived hand position was influenced by visual information from the virtual hand 

(Fig. 2A).  

How does visuo-tactile delay modulate perceived hand position? If the visuo-proprioceptive 

separation was less than 10cm, the tested delays of 0-1s (between tactile stimulation and the visual 

animation on the virtual hand) had no significant influence on the perceived hand position. For 

separations between 20 and 30cm, however, the perceived hand position drifted towards the virtual 

hand for near-synchronous stimulation (visuo-tactile delay < 0.2s) by a significantly larger amount 

than for asynchronous (delays from 0.6s to 1s) stroking (p=0.003, two-tailed T-test; Fig. 2A). The 

largest drift was found for near-synchronous stroking when the virtual and real hands were 

approximately 15 to 25cm apart. Importantly, the drift of perceived hand position towards the 

virtual hand under conditions of near-synchronous stroking was induced reliably (variance of 

perceived drift ≈ 7cm) for visuo-proprioceptive separations smaller than 20cm. By contrast, we 

found a broad distribution of perceived hand positions when the visuo-proprioceptive separation 

was between 20 and 30cm, indicating that drift induction was much less reliable for larger 

separations (Figs. 2A and 2B).  

In order to understand the distribution of perceived hand positions, we developed a model of how 

subjects integrate sensory information from vision (arising from the virtual hand on the head-

mounted display) and proprioception (hand position as estimated from proprioceptive signals 

stemming from the subject’s real hand). Additionally, we incorporated into our model how this 

integration is influenced by ownership as manipulated through additional visuo-tactile stimulation 

(stroking of the virtual and real hands with different visuo-tactile delays).  If the real hand is at 

position Q, the position of the hand as estimated by proprioceptive cues is formulated as Xp = Q + 

ηp , where the noise ηp is assumed to be Gaussian distributed with a standard deviation σp that 

reflects the lack of precision of the proprioceptive information (Fig. 3A). We estimated the 

precision of proprioceptive information  (σp ≈ 7.2 cm) from the present data set using large visuo-

proprioceptive separations (>30 cm) because participants are known to disregard visual signals and 

rely solely on proprioceptive signals if the fake hand is placed far away from the real hand22. In 
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analogy to the imprecision of proprioceptive cues, we modeled noise in the visual information 

channel with a standard deviation σv. Models of sensory fusion suggest that the brain combines the 

two sources of noisy information probabilistically33–35.  Using the data for small visuo-

proprioceptive separations (<10cm) where subjects are known to fuse sensory cues33, we deduced 

the precision of visual information stemming from the virtual hand in our head-mounted display  

(σv ≈ 3.8cm; see Methods).  

Yet, in contrast to classical sensor fusion paradigms33–38, the RHI paradigm has the additional 

feature that the source of visual information may or may not overlap with the subject’s own hand. 

Therefore, we formulated our model in such a way that visual information influences perceived 

hand position only if the participant experiences the virtual hand to be their own hand (Fig. 3A), in 

which case they ought to also expect a nonexistent, or at most a very short, delay between the 

tactile and the visual strokes. The task of the subject is to infer the position of their real hand (Fig. 

3B) from the three sources of sensory information (i.e., proprioception, vision, visuo-tactile delay). 

To do so, visual and proprioceptive sources are only combined if the subject has reason to believe 

that both vision and proprioception relate to the same object in the world, i.e. that it is their own 

hand. More precisely, we hypothesized that the participants assign a probabilistic ownership 

variable to the seen virtual hand that can take one of two states (Fig. 3B): 'own=1' indicates that the 

virtual hand is ‘mine’ (i.e. the same hand as the participant’s real hand) and 'own=0' indicates that 

the virtual hand is ‘not mine’ (i.e., not the participant’s real hand).  

Based on the aforementioned estimates of the precision in the visual and proprioceptive channels 

(obtained exclusively from empirical data at very short and very large separations), our model 

assigns a probability of perceived ownership over the full range of visuo-proprioceptive separations 

from 0 to 40cm, for both near-synchronous and asynchronous visuo-tactile stimulations (Fig. 3C; cf. 

Methods for fitting procedure and Bayesian prior). We found that for near-synchronous stroking at 

distances below 20cm the model reliably generates the percept of owning the virtual hand, whereas 

distances above 30cm do not normally give rise to ownership (Fig. 3C). The transition threshold 

(defined as 50 percent probability of ownership) was found at approximately 25cm.  

Moreover, the model accurately predicts the distribution of drifts in perceived hand position across 

the large range of visuo-proprioceptive distances that we measured in our participants (Figs. 2B 

and S2). In particular, it predicts that for near-synchronous stimulation and visuo-proprioceptive 
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separations of 20 to 30cm, the distribution of perceived drifts has two peaks: a sharp peak for large 

drifts caused by the data points where our model assigns hand ownership (and therefore fuses 

visual and proprioceptive information) and a much broader peak around zero-drift generated by the 

data points where our model does not assign ownership for the virtual hand (Fig. 2B). Evidence for 

the double-peaked distribution was found by fitting a Gaussian Mixture Model to the data (see 

Methods) in the interval 20-30cm with one (log-likelihood=-1571, BIC=-780) and two components 

(log-likelihood=-1560, BIC=-769). Using these BIC indices, we computed the Bayes Factor 

between single- and double-peaked distributions and found that a Gaussian Mixture Model with 

two components is 245 times more probable to fit the observed data than a model with one 

component. 

The double-peaked structure in the histogram could be caused by inter-individual differences 

concerning the thresholds of ownership such that at a separation of 25cm, some subjects assign 

ownership whereas others do not. Alternatively, it could arise intra-individually in subjects who, 

for the same stimulus, sometimes assign ownership and sometimes do not. Consistent with both 

explanations, our model shows that the ownership threshold varies between and within single 

subjects (Fig. 3D), and that the response is double-peaked for visuo-proprioceptive separations that 

are close to the threshold of 50% ownership probability (Fig. 4A). 

Previous work on the RHI employing manually applied stroking has used a large variety of 

different stroking durations (Table S2), but has rarely investigated whether longer trials with more 

strokes would be more efficient to induce illusory hand ownership and stronger drifts of perceived 

hand position than shorter trials. We investigated this issue for perceived hand position and found 

no significant effect between short trials (fewer than 40 strokes) and long trials (more than 45 

strokes) during near-synchronous stroking. For asynchronous stroking, however, long trials at large 

visuo-proprioceptive separations (20-30cm) induced significantly less drift than short trials 

(p=0.003, two-tailed T-test; Fig. 4B). Thus, in long trials subjects are more likely to detect the 

inconsistency between the visual and tactile information caused by the visuo-tactile delay than in 

short trials. Our model also accounts for these experimental results and suggests an interpretation 

in terms of refused ownership of the virtual hand for long asynchronous trials, but not for short 

trials. 
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Discussion 

A fully-automated RHI setup has allowed us, for the first time, to perform a systematic analysis of 

how the relation and weighting of two major sensory modalities (vision and proprioception) as well 

as the impact of ownership (as manipulated through additional visuo-tactile cues) contribute to 

perceived hand position. Earlier work has studied ownership and perceived hand position with 

virtual hands presented on a distanced rear projection screen29, on a monitor39, or on a video-

projector40. Here, we built upon these earlier approaches and projected an immersive virtual reality 

scenario onto a head-mounted display showing virtual hands seen as extending from our 

participants’ bodies in stereoscopic vision. More traditional RHI studies16,18 revealed that perceived 

hand position is sensitive to various parameters such as visuo-tactile delay18,41, visuo-

proprioceptive separation22, and virtual hand posture23. Yet, in the large majority of these studies, 

the experimenter applied the visuo-tactile stroking manually at fixed visuo-tactile delays and fixed 

visuo-proprioceptive separations while only testing single or few trials per condition. The present 

RHI setup was automated and programmable, thus permitting the chosen stimulation-related 

parameters to be continuous, explicit, experimenter-independent, and reproducible within and 

across individuals. Certain effects sensitive to precise timing, such as the frequently employed 

experimental factor of visuo-tactile delay, can only be systematically tested using systems like the 

present automated paradigm. Automation additionally allowed us to perform a large number of 

trials in a comprehensive and controlled fashion, which improved comparability across conditions 

and individuals and was a necessary prerequisite for the comparison with the computational model. 

In contrast to previous studies using binary, factorial designs16,18,19, our design tested the effects of 

separation22, delay and duration in a continuous fashion across a large continuous range (Table S2). 

Importantly, the present data show that the often used visuo-proprioceptive separation of 

approximately 15-25cm16,18,19 is optimal to induce changes in perceived hand position that depend 

on visuo-tactile delay. At small (<10cm) separations, we found that drifts were independent of 

delay41, while large separations (>30cm) induced small drifts with a large variability that reflects 

the unreliability of proprioceptive signals. Extending data from a recent behavioral RHI study41, we 

found that prolonged stimulation did not boost, but significantly decreased the drift in perceived 

hand position during asynchronous stimulation with large visuo-proprioceptive separations (20-

30cm), whereas no effects of duration were observed during near-synchronous stimulations. Our 

model explains these data in terms of refused ownership of the virtual hand in long versus short 

asynchronous stimulations. 
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Although the perceived hand position drifted towards the virtual hand for all separations between 

0-40cm on average, a large drift was induced most reliably under conditions of near-synchronous 

stroking for separations of 10-20cm. For separations of 20-30cm, the drift was also large, but 

unreliable (Fig. 2B) and subject-dependent (Fig. 3D). Our hierarchical Bayesian inference model 

accounts not only for the average drift in perceived hand position as a function of separation and 

delay, but also for the observed variance, or unreliability of the drifts within and across subjects16. 

In particular, our model suggests that the distribution of drifts in perceived hand position should be 

double-peaked (or at least have a large variance caused by a shoulder in the distribution) for visuo-

proprioceptive separations that correspond to an ownership probability of about 50%. Our 

experimental data confirmed this prediction, showing this critical visuo-proprioceptive separation 

to be approximately 20-25cm when averaged across subjects (Fig. 2B). Importantly, this threshold 

can be extracted for each individual subject (Fig. 3D), representing significant progress beyond 

earlier experimental settings that relied on averaging across large subject samples18,41. The 

threshold value is important for three reasons. First, perceived hand position is strongly and 

reliably influenced by visuo-tactile delay for separations close to the threshold. Second, for 

separations around the individual threshold for a given subject, our model shows that the subject 

assigns hand ownership and therefore fuses visual and proprioceptive information for some trials 

(peak at large drift values), but generates zero drift and refuses ownership for the other trials 

(shoulder at smaller drift values in the distribution, Fig. 2B, 4A). Third, for separations 

significantly below this threshold, our model systematically assigns hand ownership and therefore 

predicts reliable fusion of visual and proprioceptive information whereas for separations 

significantly above the threshold, it predicts that subjects refuse ownership and therefore rely only 

on proprioceptive signals. Previous computational models of visuo-proprioceptive integration 

tasks33,34 did not incorporate the possibility of assigning body ownership and therefore fail to 

explain the variability of the drift and changes in the mean drift across the full range of visuo-

proprioceptive separations.   

The present model is reminiscent of a causal inference model that has been developed to account 

for illusory perceptions during a visuo-auditory illusion called the ventriloquist effect30,32 . Both the 

RHI and the ventriloquist effect concern the misperception of the location of an object. In the 

former, the object is the position of the subjects’ touched, own hand in relation to the fake hand 

that is seen as being touched (visuo-proprioceptive conflict). In the latter, it is the position of the 

ventriloquist’s mouth with respect to the seen “speaking” puppet (visuo-auditory conflict). In both 

illusions, the observer has to decide whether the different signals (visual and proprioceptive for the 
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RHI; auditory and visual for the ventriloquist effect) arise from one single cause (fake hand; 

“speaking” puppet) or from two separate causes (real or fake hand; ventriloquist or puppet). The 

parallels between the present RHI model and previous causal inference models30,32, and the analogy 

to earlier models of cue integration and fusion33–38, suggest that probabilistic inference processes 

are powerful tools to understand multisensory perception and subjective experience. However, our 

RHI model also includes distinct features of bodily processing related to the self as the 

misperceived object is part of the observer’s body and the occluded real hand gives rise to 

additional tactile signals that are not available in the ventriloquist effect. 

One of the advantages of a computational model for own body illusions is that it can be used to 

design, for individual patients, the optimal stimulation patterns for inducing hand ownership for 

artificial limbs (e.g. Fig. 3D). The application of synchronous touches to an artificial hand and the 

(occluded) stump of an upper limb amputee24,25 has already been shown to induce illusory 

ownership for the artificial hand. Based on these previous and the present findings, we argue that 

illusory hand ownership and hand position perception using automated visuo-tactile stimulation on 

the prosthetic hand and the stump or chest regions (containing skin regions with referred hand 

sensations7,14) may contribute to the design of artificial limbs that feel like real limbs. Moreover, 

for most current artificial limbs, amputees rely on visual instead of tactile and proprioceptive 

signals to interact with objects13, although somatosensory feedback has also successfully been 

integrated into prostheses10–12. Our data suggest that such forms of visual and somatosensory 

feedback can be empowered by additional automated visuo-tactile feedback that generates 

ownership for the prosthesis when interfaced with the skin25, the peripheral42, or the central 

nervous system4,5. Combining visual and somatosensory feedback with ownership automation is 

likely to boost tactile perception in amputees43, may induce the sensation that foreign, touched 

objects are a part of the amputee’s body (and not just a prosthesis), and may decrease the rejection 

rate of current artificial limbs due to the feeling that they are too heavy and alien. 

Methods 

Participants  

18 healthy, right-handed participants (10 females; aged: 24 ± 5.8 years; mean±SD) were recruited 

for the main study. In addition, for a pilot study where we investigated illusory touch and hand 

ownership using the current setup (see Supplementary Fig. S1), 11 healthy right-handed 

participants (4 females, aged: 23.5 ± 4.9 years; mean±SD) were recruited. All participants reported 
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having normal or corrected-to-normal vision and gave informed consent prior to partaking in the 

two studies. The studies were undertaken in accordance with the ethical standards as defined in the 

Declaration of Helsinki and was approved by the local ethics research committee at University of 

Lausanne. 

Visuo-tactile Stimulation  

The general experimental setup is shown in Figure 1. Tactile stimulation was provided via a set of 

four, button-style vibration motors (Precision Microdrives, London, UK) affixed in a line to the top 

of the participants’ right hand. The vibration motors were 12mm in diameter, with a weight of 1.7g, 

and vibrated at a maximum of 9000rpm. The motors were programmed to vibrate in sequence to 

simulate a continuous, stroke-like movement lasting 600ms (100ms per motor; 50ms inter-motor 

vibration pause). This type of sequence was chosen to automatize the stroking patterns that are 

generally used to manually stroke the participants’ hand during the RHI16,17. The direction of the 

stroking sequence was either to the left or to the right (randomized across participants). An inter-

stroke interval of 600ms was inserted between strokes to aid in perceiving the sequence of 

vibrations as a single motion (Fig. 1E, top). Visual stimuli were rendered with XVR (VRMedia, 

Pisa, Italy) on a Fakespace Wide5 head-mounted display (HMD; Fakespace Labs, Mountain View, 

CA, USA). The HMD displayed a stereoscopic virtual scene with a tabletop and four spheres on a 

virtual right hand (Fig. 1B) representing the four vibration motors on the real right hand (Fig. 1A). 

Visual “vibrations” were represented by animating the virtual motor to jitter and by changing its 

color from white to red. Synchronization between visual and tactile stimuli was controlled with a 

custom-made program (precision of ~0.1ms). 

General Procedure  

Participants saw a 3D virtual hand on the screen of the HMD while the skin of the participants’ real 

hand (resting on a table in front of them) was stimulated by a set of four small electric vibrators 

(Fig. 1A). We addressed the issue of whether the hand is perceived at the position of the real hand, 

at the position of the virtual hand, or somewhere in between. Participants were seated in a fixed 

chair ~10cm in front of a table (Fig. 1A). The HMD was individually fit to each subject to ensure 

the real and virtual tables were aligned and to create a close perspective correspondence between 

the real and virtual scenes. Furthermore, the head was restrained with a chin rest to stabilize the 

virtual scene. The HMD fully blocked the participants’ vision of the table, their real hand, and the 

rest of the room. To eliminate the possibility that participants perceived auditory cues from the 

vibrators, white noise was provided through a set of headphones. The participants’ right hand 
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(palm down) was placed on the table with the tip of the middle finger at one of three pre-defined 

proprioceptive hand positions. A virtual hand was projected at different positions on the virtual 

tabletop (see below). Participants were asked to fixate on the virtual hand and to remain still while 

visuo-tactile stimulation was administered. 

Main Experiment 

The HMD, the virtual scenario including virtual hand and table, and the visuo-tactile stimulation 

methods were as described above. We tested subjects’ responses for a large range of different 

stimulation configurations across three main parameters: (1) visuo-tactile delay, (2) duration of 

stimulation, and (3) visuo-proprioceptive separation. We adopted a continuous experimental design, 

in which each trial was defined by fixing the three parameters. The visuo-proprioceptive separation 

ranged from 0 to 40cm, trial duration from 5 to 90 strokes (with 1 stroke = 1.2s), and visuo-tactile 

delay from 0 to 1s. All parameters were selected randomly on a trial-by-trial basis with uniform 

probability. This setup allowed us to administer computer-controlled, automatized visuo-tactile 

stimulation across a large range of stroking durations as well as visuo-tactile delays (from near-

synchronous to many different levels of asynchronous stimulation). Throughout the experiment, 

the proprioceptive hand position was fixed by the experimenter and changed after five trials by 

displacing the subjects’ right hand to one of three randomly selected positions (17, 26, or 35cm to 

the right of the body midline). These parameter ranges were determined from pilot studies with the 

aim of focusing the collected data on regions where the subjects were found to be more sensitive 

on average.  

Each trial involved a visuo-tactile stimulation period (see General Procedure) followed by a 

darkened virtual scene without the virtual table and the virtual hand. Next, the virtual scene 

reappeared with a virtual ruler (with centimeter precision) spanning the virtual table (Fig. 1C). 

Participants were instructed to verbally provide the label of the tick on the virtual ruler 

corresponding to the perceived position of the tip of the real right hand’s middle finger (adapted 

from18 ). Labels for the ticks on the virtual ruler were randomly selected on a per-trial basis. 

Of the eighteen participants recruited for this experiment, fifteen performed 62 4 (mean SD) 

trials and the remaining three participants performed 163 37 trials. We recorded a larger number 

of trials for these three participants in order to contrast our proposed model with competing models 

on a per-subject basis. For the group analysis, a total of 1341 trials were pooled across all eighteen 

participants. 

± ±
±
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Model Description 

We test whether a Bayesian ideal observer model with access to visual, tactile, and proprioceptive 

cues provides a reliable explanation of the perceived hand position in the RHI. We hypothesize that 

the perceived hand position during the RHI is a combination of prior beliefs (top-down influence) 

and sensory input to three sensory modalities (vision, proprioception, touch). The model relies on 

three assumptions: (i) incoming visual and proprioceptive information is independent, i.e. the firing 

of primary visual neurons and proprioceptive neurons are statistically independent of one another 

for a given sensory stimulus; (ii) visuo-tactile synchrony conveys information about the ownership 

of the hand; and (iii) prior to integrating visual and proprioceptive information, the subject makes a 

(likely unconscious) top-down decision as to whether the virtual hand is one’s own hand or not 

(hand ownership). Assumptions (ii) and (iii) are based on findings from previous RHI studies 

demonstrating that visuo-tactile synchrony modulates hand ownership and that top-down 

information can influence the RHI.  

Our model of perceived hand position in the RHI paradigm is composed of two sub-models. First, a 

perception model is described to model how the participants form and maintain their internal 

percepts of their hand position as well as ownership of the virtual hand. Second, a response model 

is constructed to capture how subjects will report when asked about his or her percept. In analogy 

to the model proposed in44, our perception model is an encoder of sensory related information, 

while our response model is a decoder that exploits the representation formed by the encoder in 

order to produce meaningful decisions. 

PERCEPTION MODEL 

Suppose that the subject believes that the virtual hand is his or her own hand and that the real hand 

is located at position Q. The subject should then expect that both the visual (Xv) and proprioceptive 

(Xp) position signals fluctuate around this real hand position. We model this using assumption (i) 

and define the stimulus likelihood: 

    (1) 

where  is a Gaussian evaluated at x, with mean µ and standard deviationσ. This simple 

model has been successfully used to explain visuo-auditory, visuo-spatial, and visuo-proprioceptive 

integration tasks33–38. 
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In our experiment, the visuo-tactile synchrony is defined by the delay Z, between the visual and 

vibrotactile stroking patterns. Perfect synchrony requires a visuo-tactile delay of 0s, but due to 

noise in the sensory systems, the perceived delay may fluctuate around 0s with a small variance ߪ௭. 

Since the visuo-tactile delay is always positive, we model its likelihood with an exponential 

distribution ܧሺܼ, ,ሺܼܧ ௭ሻ defined byߪ ௭ሻߪ ൌ exp ቀെ ௓ఙ೥ቁ  ௭. Taking into account this visuo-tactileߪ/

likelihood term, we extend the visuo-proprioceptive likelihood in Eq. (1) to: 

 (2) 

This equation defines the distribution of the perceptual measurements from the three sensory 

systems (vision, proprioception and visuo-tactile delay) that one should expect if he or she believes 

that their hand to be at position Q and that the seen hand is their own hand. If the subject does not 

believe the seen hand to be his or her own hand, the visual position signal will no longer fluctuate 

around the real hand position, but rather around a mean തܳ, whose value is unknown to the subject.. 

Analogously, the visuo-tactile delay also fluctuates around an unknown mean ҧܼ . Because തܳ and ҧܼ 
are both unknown, we marginalized both variables over a large window in both the visual and 

visuo-tactile delay domains using a flat prior, ݌ሺ തܳ, ҧܼሻ ൌ  is a constant. If the size of this ߴ where ,ߴ

window is much larger than the size of the visual modality’s standard deviation ሺߪ௩) and the visuo-

tactile standard deviation ሺߪ௭), the marginalized likelihood can be well approximated by: ׭ ൫݌ ܺ௩, ܺ௣, ܼ, തܳ, ҧܼ פפ ܳ ൯݀ തܳ݀ ҧܼ ൎ ܰ൫ܺ௣; ܳ,  .ߴ௣൯ߪ

Given this, the general likelihood function that accounts for both possible ownership beliefs is 

defined as: 

  (3) 

where the binary variable ‘own’ models the belief that the subject has about the ownership of the 

virtual hand. The resulting model can be seen as an extension of previously proposed models for 

causal inference31,32,45, though in contrast to previous models, our model accounts for three sensory 

modalities rather than two. Because the brain has no direct access to either the real hand position Q 
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or the ownership assignment of the virtual hand (own=0,1), it must deduce both values from 

sensory cues.  

For an ideal observer who receives a multisensory stimulus ሼܺ௩ , ܺ௣ , Zሽ, the knowledge about the 

variables ሼQ,  :ሽ is contained in the posterior distribution using Bayes formula݊ݓ݋

    (4) 

where ݌଴ሺܳ,   .ሻ is the prior knowledge that the subject has about the latent variables݊ݓ݋

The quantity p(Q,own | X
p
, X

v
,Z )  is also known as the belief state as it provides a measure of how 

much the ideal observer believes that a particular pair (Q,own)corresponds to the true hand 

position and to the true ownership state. The model summarized in Eq. (4) differs from standard 

multisensory integration models33–38 because it incorporates the concept of ownership and takes 

into account three sensory modalities: vision, touch and proprioception. 

In the main experiment, subjects report the perceived hand position. However, we do not know 

their internal state of ownership assignment. By marginalizing over the ownership variable, we 

obtain: 

    (5) 

Henceforth we assume the prior ݌଴ሺܳ,  ሻ to be flat for Q, but for consistency and generalization݊ݓ݋

purposes, we consider the prior over the ownership variable to be adaptive and parameterized as   ݌଴ሺܳ, ݊ݓ݋ ൌ 1 ሻ ൌ c, where ܿ א  ሾ0,1ሿ.  
Substituting ݌଴ሺܳ,  ሻ into (5) and solving the integral over ܳ, we obtain the final probability݊ݓ݋

density function in the form of a Gaussian Mixture Model with a mixture coefficient ߙ that is also a 

function of the perceptual stimuli: 

p(Q,own | Xp , Xv ,Z ) =
p(Xp , Xv,Z | Q,own)p0 (Q,own)

dQp(Xp , Xv ,Z | Q,own)p0 (Q,own)
own


p(Q | Xp , Xv ,Z ) =
p(Xp , Xv ,Z | Q,own)p0 (Q,own)

own


dQp(Xp , Xv ,Z | Q,own)p0 (Q,own)
own

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(6) 

The first term on the right-hand side in the first line of Eq. (6) accounts for the situation where the 

subject does not believe that the virtual hand he or she sees is their own hand and therefore relies 

only on proprioceptive cues. This case contributes to the final estimate with a weight ߙ. The second 

term (weight: ሺ1 െ  ሻሻ describes a Gaussian with a center that represents a weighted averageߙ

between visual (weight ߣ) and proprioceptive information (weight ሺ1 െ  and c need not be considered as different parameters but can rather be merged into a single ߴ ሻ). Note that the constantsߣ

parameter ߟ ൌ ܿ/ሾߴሺ1 െ ܿሻሿ without a loss of generality. Thus, the set of free parameters of our 

model is ൛ߪ௩, ,௣ߪ ,௭ߪ  .ൟߟ

Note that the variable α  has a particularly important meaning as ሺ1 െ  ሻ is the posteriorߙ

probability of the ownership of the virtual hand given the prior and the sensory input, namely: 

(1 െ ሻߙ ൌ ݊ݓ݋ሺ݌ ൌ ݊ݓ݋ሺ݌  .ሻ. If ownership of the virtual hand is certain, i.eݏݑ݈ݑ݉݅ݐݏ|1 ൌ ௩ܺߣ ሻ=1, then the positionݏݑ݈ݑ݉݅ݐݏ|1 ൅ ሺ1 െ  ሻܺ௣  (cf. Eq. (6)) is equivalent to theߣ

Maximum Likelihood Estimate (MLE) of the perceived hand position in the case where the subject 

fuses both vision and proprioception. 

RESPONSE MODEL 

Our perception model is defined by the distribution p(Q|Xv,Xp,Z), that is, the distribution of 

perceived hand positions Q given the multisensory input as described by Eq. (6). Next, we specify 

how a subject makes their decision when reporting their perceived hand position. Here, we assume 

that the subject draws a single sample from the distribution p(Q|Xv,Xp,Z) and reports the resulting 

Q-value. 

In general, a given subject’s decision making strategy depends on their individual cost functions46. 

For instance, if the cost function of the subject is based on the mean squared error (MSE), the 

optimal policy consists of reporting the posterior mean of the belief state. However, in 

disagreement with this hypothesized cost function, our results rather suggest that a mixture of two 
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Gaussians provides a better explanation than a single Gaussian for the observed proprioceptive 

drifts at visuo-proprioceptive separations in the range 20-30cm (as measured by the Bayesian 

Information Criterion, see Significance Tests below). Alternatively, if the cost function is assumed 

to be a Dirac-delta on the correct answer, the optimal policy is to report the maximum a posteriori 

(MAP).  As it has been shown that subjects may use approximations to the MAP estimate based on 

few samples from the posterior47, our response model can be interpreted as an extreme 

approximation to the MAP strategy based on a single sample from the posterior distribution of 

perceived hand positions. 

Parameter Optimization 

The four free parameters ൛ߪ௩, ,௣ߪ ,௭ߪ  ൟ in Eq. (6) were fit using the following step-by-stepߟ

procedure for both the group (e.g. Fig. 2B) and individual data sets (e.g., Figs. 3D, 4A):   

(i) For visuo-proprioceptive separations larger than 30cm, we first measured the standard deviation 

of perceived drifts from the data. This defined the parameter ߪ௣, which remained fixed throughout 

the rest of the fitting procedure.  

(ii) For visuo-proprioceptive separations smaller than 10cm, we measured the standard deviation of 

perceived drifts from the data. This defined the standard deviation 1/ට ଵఙೡమ ൅ ଵఙ೛మ under the 

assumption of fusion of two independent Gaussian signal channels33, represented by vision and 

proprioception in our setup. Since (i) provided the value of the parameter ߪ௣, we could deduce ߪ௩, 

which also remained fixed subsequent steps.  

(iii) The delay parameter ߪ௭ was inconsequential for our analysis leading to Figs. 2B, 4A, and 4B. 

Thus, for these fits, we only considered one free parameter (ߟ) that reflects the Bayesian prior in 

the full model described in Eq. (6). We determined a distribution p(η | Data) of plausible 

parameter values by using a Markov Chain Monte Carlo (MCMC) procedure48, under the 

assumption of a flat prior p
0
(η | Data)  on a finite interval (η ∈[0,4000]). We computed 10,000 

steps of MCMC resulting in 10,000 possible choices of the parameter where a specific value η
k
 

appears with a probability p(η | Data). This probability is itself proportional to p(Data |η,σ
p
,σ

v
), 

where ‘Data’ represents the reported drifts Q for a given Xp and Xv for the real and virtual hands, 

respectively, and η ,௣ߪ,  ௩ defines the set of free parameters of the model described in Eq. (6). Weߪ

η
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proceeded analogously for our analysis leading to Figs. 3C and 3D except that we treated the two 

free parameters ߠ ൌ ሼߪ௭, ሽ in parallel (with a flat prior over σߟ
z
 in the interval [0s, 1s]).  

(iv) The full model from Eq. (6) is plotted in Figs. 2B and 4A, evaluated at the data points for each 

range (e.g., visuo-proprioceptive separations between 10cm and 20cm), adding the contributions of 

all 10,000 possible choices of θ : 

1

( | , ) ( |
1

( | , ,( |) , ,) )v p v p s p

S

s
vp Q p datp Q X X d X X X X

S
a p Qθ θ θ θ

=

≈=       (7) 

Analogously, for Fig. 3C and the insets of Fig. 3D, we plot the inferred ownership ሺ1 െ ሻߙ ൌ݌ሺ݊ݓ݋ ൌ  ሻ as a function of the visuo-proprioceptive separation, summing over allݏݑ݈ݑ݉݅ݐݏ|1

10,000 parameter choices ߠ ൌ ሼߪ௭,  ሽ that result from the MCMC method.  For the thresholdߟ

values in Fig. 3D, we first determine the ownership curve ሺ1 െ ሻߙ ൌ ݊ݓ݋ሺ݌ ൌ  ሻݏݑ݈ݑ݉݅ݐݏ|1

separately for each of the 10,000 parameter choices and then find the value of visuo-proprioceptive 

separation (threshold) for which the ownership curve passes through the value of 0.5. In Fig. 3D, 

the mean and standard deviation of the resulting threshold values are shown. 

Significance Tests 

In each visuo-proprioceptive range in Figs. 2A and 4B, there are a finite number of data samples, N. 

We therefore computed whether a sample of N data points drawn from the model looked similar to, 

or statistically differed from, the observed N experimental data points.  To this aim, we drew 4000 

samples from the model’s predictive distribution as defined in Eq. (7) for each visuo-proprioceptive 

separation range (e.g. 10-20cm, 20-30cm, etc.). These predictive samples were then compared to 

the experimentally observed distribution of drifts in the same range. Finally, we computed the 

respective histograms (bin size=3cm) and performed a two-sample χ 2 -test.  

In order to test whether a Gaussian Mixture Model with one or two components better explained 

the drifts in the visuo-proprioceptive separation interval of 20-30cm, we fit both models and 

compared them using the Bayesian Information Criterion49 (BIC). The BIC is defined in terms of 

the model’s log-likelihood p(Data |θ ), the number of free parameters in the model d , and the 

amount of data seen by the model N  as: BIC = −2ln p(Data |θ ) + d ln N . Thus, models with 

smaller BIC values indicate better, more parsimonious descriptions of the data. The Bayes Factor 
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BF = p( M1 | Data) / p( M2 | Data)  between two models M1
 and M2

 can be approximated with 

their respective BIC values as: BF ≈ exp[−(1/ 2)BIC
1

+ (1/ 2)BIC
2
]. Given the computed BIC 

values from the single and double-peaked Gaussian Mixture Models (see Results), we found a BF 

of approximately 245, indicating that a mixture model with two components is 245 times more 

probable to fit the observed data than a model with one component. 
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Figure Captions 

Figure 1 

Automated setup to induce hand ownership for a virtual hand.  

(A) Experimental setup: the participant’s right hand is stimulated by small vibrotactile motors 

while looking at a virtual scene on a head-mounted display that occludes vision of their hand. (B) 

Subjects see a virtual hand with virtual representations of the vibrotactile motors on their real hand. 

(C) Following visuo-tactile stimulation, a virtual ruler was presented for participants to report 

perceived hand position. (D) Illustrative case where visual, proprioceptive, and perceived hand 

positions differ from one another. (E) Representative temporal sequence of visuo-tactile 

stimulation on the hand for a given trial. Vibrotactile motors “stroked” the hand with a sequence of 

four vibrations either in synchrony with a visual counterpart (synchronous) or with an injected 

delay Z (asynchronous). Individual motor colors added for graphical representation only. Note that 

all virtual scenes are shown in a monocular view though participants saw stereoscopic scenes. 

Figure 2 

Empirical data on perceived hand position depend on visuo-proprioceptive separation and 

visuo-tactile delay.  

(A) Each point represents an individual trial with a given visuo-proprioceptive separation (y-axis) 

and the drift as reported by the participants (x-axis; where drifts are +/- absolute value of 

the ’reported hand position’ - ‘real hand position’). Positive drifts indicate a shift of perceived hand 

position towards the virtual hand.  To avoid overlap of trials with identical parameter settings, a 

small Gaussian jitter (  and ) was added for visualization purposes. Small visuo-

tactile delays (Z < 0.2s) are shown in red, large visuo-tactile delays (Z >0.6s) are in blue. Colored 

vertical bars indicate mean drift averaged over all trials within a visuo-proprioceptive separation 

range of 0-10cm, 10-20cm, 20-30cm, and 30-40cm (from bottom to top). The mean of synchronous 

trials (red bar) and asynchronous trials (blue bar) are provided in these ranges (shaded regions: 

SEM). Vertical solid line at zero-drift indicates perceived hand position responses that are 

independent of visual cues (and thus rely exclusively on proprioceptive cues). The dashed diagonal 

line outlines the contrary situation, where responses are influenced exclusively by visual cues.  (B) 

Histograms of the experimental distribution of perceived drifts for each of the four ranges in (A). 

The solid black curve indicates the distribution prediction from the model. Note the broad 

distribution for visuo-proprioceptive separations >20cm that is well captured by the model.  The 

μ = 0cm σ = 0.2cm
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vertical solid line and dashed diagonal lines represent the visual- and proprioceptive-dominated 

responses, as in (A). Between 0–30cm of visuo-proprioceptive separation, the model does not 

significantly differ from the empirical data ( χ 2 -test: 0-10cm, df=112, p=0.18; 10-20cm, df=180, 

p=0.03; 20-30cm, df=312, p=0.16; 20-30cm, df=234, p=0.1).  

Figure 3 

Three-sense Bayesian model of the rubber hand illusion.  

(A) Causal diagram representing the sensory variables (proprioceptive position, visual position, 

visuo-tactile delay) and their dependencies upon the causes in the external environment. The rubber 

hand illusion setting contains a real hand at position Q (top left) that is either one’s own hand 

(own=1, top right) or not (own=0). (B) Perceived hand position (top left) and probability of 

ownership (top right) are inferred from the sensory variables Xp, Xv, and Z.  (C) Model-predicted 

probability of ownership for the virtual hand as a function of the visuo-proprioceptive separation 

for synchronous (Z = 0.1s, red) and asynchronous (Z = 0.7s, blue) visuo-tactile stimulation. 

Ownership thresholds (dashed arrows) are defined as the visuo-proprioceptive separation that 

yields a probability of ownership of 0.5 (dashed horizontal line). (D) Ownership thresholds (mean 

and standard deviation) for synchronous (Z = 0.1s, red) and asynchronous (Z = 0.7s, blue) visuo-

tactile stimulation for individual subjects, as extracted by the model. NA indicates that the 

ownership threshold was ill defined for that subject. Insets: Model-predicted probability of 

ownership (as in (C)), for three individual participants. 

Figure 4   

Detailed data analysis: Single subject and trial duration. 

(A) Histograms of the empirical distribution of drifts and the model prediction (as in Fig. 2B) for 

an individual participant (subject 18). For visuo-proprioceptive separations between 0 and 30cm, 

the model was not found to significantly differ from the empirical data (Z-scores: 0-10cm, z=0.074; 

10-20cm, z=0.11; 20-30cm, z=1.59; 30-40cm, z=2.12). (B) Long trials (>45 strokes, dark blue) and 

short trials (<40 strokes, light blue) during asynchronous stroking. Each point represents an 

individual trial (cf. Fig. 2A). Vertical bars indicate average mean drift (shaded regions: standard 

deviation) over all trials within a visuo-proprioceptive separation range (from bottom to top: 0-

10cm, 10-20cm, 20-30cm, and 30-40cm). For separations between 20 and 30cm, long trials of 

asynchronous stroking induced significantly less drift than for short trials (p=0.003, two-tailed T-

test). 
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Supplementary	
  Figure	
  Captions	
  

Supplementary	
   Figure	
   1.	
   Experimental	
   design	
   and	
   self	
   report	
   scores	
   for	
   the	
   induction	
   of	
  
illusory	
  ownership.	
  In	
  this	
  experiment,	
  we	
  used	
  a	
  2x2	
  factorial	
  design	
  with	
  the	
  factors	
  Stroking	
  
and	
  Posture.	
  Visuo-­‐tactile	
  stroking	
  was	
  applied	
  for	
  one	
  minute	
  either	
  synchronously	
  (no	
  visuo-­‐
tactile	
   delay)	
   or	
   asynchronously	
   (visuo-­‐tactile	
   delay	
   of	
   400ms).	
   The	
   virtual	
   hand	
   position	
  was	
  
fixed	
  17	
  cm	
  to	
  the	
  left	
  of	
  the	
  real	
  hand1,2	
  and	
  its	
  orientation	
  was	
  either	
  congruent	
  to	
  the	
  real	
  hand	
  
posture	
   or	
   incongruent3	
   (virtual	
   hand	
   rotated	
   90°	
   toward	
   the	
   body	
   midline).	
   Immediately	
  
following	
  the	
  visuo-­‐tactile	
  stimulation,	
  participants	
  were	
  given	
  a	
  questionnaire	
  composed	
  of	
  ten	
  
questions	
   (7-­‐item	
   Likert	
   scale)	
   to	
   gauge	
   the	
   strength	
   of	
   the	
   RHI	
   in	
   each	
   condition	
   (see	
  
Supplementary	
   Table	
   1	
   for	
   the	
   complete	
   list	
   of	
   questions).	
   The	
   order	
   of	
   the	
   experimental	
  
conditions	
  was	
  randomized	
  and	
  balanced	
  across	
  subjects.	
  For	
  this	
  experiment,	
  11	
  healthy	
  right-­‐
handed	
   participants	
   (4	
   females,	
   aged:	
   23.5	
   ±	
   4.9	
   years	
   mean±SD)	
   were	
   recruited.	
   (A)
Experimental	
  design	
  illustration	
  showing	
  hand	
  positions	
  for	
  the	
  real	
  hand	
  and	
  the	
  virtual	
  hand	
  in	
  
congruent	
   and	
   incongruent	
   posture	
   conditions.	
   (B)	
   Illusory	
   hand	
   ownership	
   scores	
   (item	
   Q3	
  
from	
  Supplementary	
  Table	
  1)	
  and	
  scores	
  for	
  a	
  control	
  question	
  (item	
  Q5).	
  Scores	
  from	
  the	
  7-­‐item	
  
Likert	
  scale	
  were	
  normalized	
  between	
  -­‐3	
  and	
  3.	
  Post-­‐hoc	
  Wilcoxon	
  matched-­‐pair	
  tests	
  revealed	
  a	
  
body-­‐selective,	
   synchrony-­‐dependent	
   modulation	
   of	
   illusory	
   hand	
   ownership	
   question	
  
(p=0.005).	
  Importantly,	
  this	
  result	
  was	
  absent	
  for	
  the	
  control	
  conditions	
  with	
  incongruent	
  visual	
  
hand	
  postures,	
  as	
  well	
  as	
  for	
  the	
  control	
  question	
  (all	
  p	
  >	
  0.05).	
  

Supplementary	
  Figure	
  2.	
  Comparison	
  of	
  our	
  proposed	
  model	
  with	
  a	
  linear	
  model	
  that	
  always	
  
fuses	
  vision	
  and	
  proprioception4.	
  Model	
  comparison	
  is	
  performed	
  using	
  the	
  Deviation	
  
Information	
  Criterion	
  (DIC)5,	
  defined	
  as	
  

DIC := !2 2 ln p(Data |" ) p(" |Data) ! ln p(Data | " p(" |Data) )#$ %& ,	
  where	
   f (•) p(•) is	
  the

expectation	
  of	
  a	
  function	
   f (x) 	
  under	
  the	
  density	
   p(x) 	
  and	
  ! is	
  the	
  set	
  of	
  free	
  parameters	
  of
the	
  model.	
  Small	
  DIC	
  values	
  indicate	
  stronger	
  models.	
  DIC	
  values	
  are	
  estimated	
  using	
  Markov	
  
Chain	
  Monte	
  Carlo,	
  MCMC.	
  The	
  MCMC	
  procedure	
  produces	
  samples	
  from	
   p(! |Data) 	
  that	
  are
necessary	
  for	
  the	
  estimation	
  of	
  DIC	
  values	
  (104	
  samples,	
  using	
  103	
  burning	
  steps	
  and	
  a	
  thinning	
  
of	
  10	
  steps).	
  (A)	
  Relative	
  model	
  performance	
  between	
  our	
  model	
  and	
  the	
  linear	
  model,	
  defined	
  
as performance = (DICproposed ! DIClinear ) /" diff ,	
  where	
  ! diff 	
  is	
  the	
  estimated	
  standard
deviation	
  of	
  the	
  difference	
  between	
  DIC	
  scores.	
  Relative	
  performance	
  measures	
  are	
  shown	
  for	
  
data	
  collapsed	
  across	
  participants	
  (group)	
  and	
  for	
  each	
  individual	
  subject.	
  NA	
  indicates	
  subject	
  
data	
  that	
  led	
  to	
  ill-­‐defined	
  DIC	
  scores.	
  We	
  found	
  our	
  model	
  to	
  outperform	
  the	
  linear	
  model	
  
(negative	
  relative	
  performance	
  values)	
  in	
  the	
  large	
  majority	
  of	
  individual	
  subjects	
  and	
  at	
  the	
  
group	
  level.	
  (B)	
  Empirical	
  drift	
  measurements	
  for	
  an	
  individual	
  participant	
  (black	
  dots;	
  Subject	
  
18) with	
  the	
  model	
  prediction	
  for	
  synchronous	
  (red	
  curve)	
  and	
  asynchronous	
  (blue	
  curve)	
  trials.
Shaded	
  regions	
  correspond	
  to	
  the	
  predicted	
  standard	
  deviation	
  of	
  the	
  mean.	
  (C)	
  Linear	
  model	
  
predictions	
  for	
  synchronous	
  and	
  asynchronous	
  trials	
  on	
  the	
  same	
  participant’s	
  data.	
  Note	
  that	
  
without	
  the	
  third	
  sensory	
  modality	
  (tactile),	
  no	
  distinction	
  is	
  made	
  between	
  predictions	
  for	
  
synchronous	
  and	
  asynchronous	
  trials.	
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Question	
   Synchronous	
  
Congruent	
  

Asynchronous	
  
Congruent	
  

Synchronous	
  
Incongruent	
  

Asynchronous	
  
Incongruent	
  

Q1:	
  It	
  seemed	
  as	
  if	
  I	
  were	
  feeling	
  the	
  
vibrations	
  in	
  the	
  location	
  where	
  I	
  saw	
  the	
  
virtual	
  hand	
  being	
  vibrated.	
  

2.09	
  ±	
  0.37	
   -­‐0.82	
  ±	
  0.57	
   2.23	
  ±	
  0.29	
   -­‐0.55	
  ±	
  0.57	
  

Q2:	
  It	
  seemed	
  as	
  though	
  the	
  virtual	
  
vibrations	
  I	
  felt	
  were	
  caused	
  by	
  the	
  
vibrations	
  I	
  saw	
  on	
  the	
  virtual	
  hand.	
  

1.27	
  ±	
  0.39	
   -­‐0.91	
  ±	
  0.51	
   0.55	
  ±	
  0.59	
   -­‐0.73	
  ±	
  0.55	
  

Q3:	
  I	
  felt	
  as	
  if	
  the	
  virtual	
  hand	
  were	
  my	
  
own	
  hand.	
   0.82	
  ±	
  0.44	
   -­‐0.82	
  ±	
  0.48	
   -­‐0.27	
  ±	
  0.55	
   -­‐1.18	
  ±	
  0.44	
  

Q4:	
  It	
  felt	
  as	
  if	
  my	
  (real)	
  hand	
  was	
  
moving/drifting	
  towards	
  the	
  virtual	
  hand’s	
  
position.	
  

-­‐1.09	
  ±	
  0.45	
   -­‐1.55	
  ±	
  0.45	
   -­‐1.18	
  ±	
  0.49	
   -­‐1.64	
  ±	
  0.41	
  

Q5:	
  It	
  seemed	
  as	
  if	
  I	
  might	
  have	
  more	
  than	
  
one	
  right	
  hand	
  or	
  arm.	
   -­‐1.09	
  ±	
  0.60	
   -­‐1.36	
  ±	
  0.50	
   -­‐1.64	
  ±	
  0.43	
   -­‐1.18	
  ±	
  0.51	
  

Q6:	
  It	
  seemed	
  as	
  if	
  the	
  vibrations	
  I	
  felt	
  
originated	
  from	
  somewhere	
  between	
  my	
  
own	
  hand	
  and	
  the	
  virtual	
  hand.	
  

-­‐0.91	
  ±	
  0.51	
   -­‐0.91	
  ±	
  0.65	
   -­‐1.27	
  ±	
  0.58	
   -­‐0.27	
  ±	
  0.59	
  

Q7:	
  It	
  felt	
  as	
  if	
  my	
  (real)	
  hand	
  was	
  
becoming	
  ‘virtual’.	
   0.64	
  ±	
  0.45	
   -­‐0.82	
  ±	
  0.60	
   -­‐0.36	
  ±	
  0.58	
   -­‐0.64	
  ±	
  0.53	
  

Q8:	
  It	
  appeared	
  (visually)	
  as	
  if	
  the	
  virtual	
  
hand	
  was	
  drifting	
  towards	
  my	
  (real)	
  hand.	
   -­‐0.55	
  ±	
  0.39	
   -­‐1.82	
  ±	
  0.44	
   -­‐1.45	
  ±	
  0.45	
   -­‐0.55	
  ±	
  0.57	
  

Q9:	
  The	
  virtual	
  hand	
  began	
  to	
  resemble	
  my	
  
own	
  (real)	
  hand	
  in	
  terms	
  of	
  shape,	
  skin	
  

tone,	
  freckles,	
  or	
  some	
  other	
  visual	
  feature.	
  
-­‐1.0	
  ±	
  0.53	
   -­‐1.18	
  ±	
  0.49	
   -­‐0.91	
  ±	
  0.49	
   -­‐1.73	
  ±	
  0.32	
  

Q10:	
  I	
  felt	
  as	
  if	
  I	
  were	
  fully	
  immersed	
  in	
  the	
  
virtual	
  environment.	
   0.27	
  ±	
  0.47	
   -­‐0.64	
  ±	
  0.49	
   -­‐0.09	
  ±	
  0.55	
   -­‐0.36	
  ±	
  0.62	
  

	
  
Supplementary	
   Table	
   1.	
   Questionnaire	
   scores	
   from	
   the	
   illusory	
   ownership	
   pilot	
   experiment.	
  
Scores	
  correspond	
  to	
  a	
  7-­‐item	
  Likert	
  scale	
  normalized	
  between	
  -­‐3	
  and	
  3.	
  Questions	
  were	
  adapted	
  
from	
  classical	
  questionnaires	
  gauging	
  illusory	
  effects	
  during	
  the	
  RHI6,7.	
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Paper	
  
Duration	
  of	
  visuo-­‐
tactile	
  stimulation	
  

(s)	
  

Visuo-­‐tactile	
  delay	
  
(ms)	
  

Visuo-­‐prorioceptive	
  
separation	
  (cm)	
  

Present	
  work	
  
{15.7,31.5,56.7	
  
85.0,113.4,141.7	
  
170.1,226.8,	
  283.5}	
  

[0,800]	
   [0,35]	
  

Botvinick	
  et	
  al.	
  (1998)	
  6	
   NA	
   NA	
   NA	
  
Tsakiris	
  &	
  Haggard	
  (2005)	
  1	
   240	
   [500,1000]	
   17.5	
  
Moseley	
  et	
  al.	
  (2008)	
  8	
   450	
   NA	
   NA	
  
Kammers	
  et	
  al.	
  (2009)9	
   90	
   NA	
   15	
  

Lloyd	
  (2007)	
  2	
   60	
   NA	
   {17.5,27.5,37.5,47.5,5
7.5,67.5}	
  

Ehrsson	
  et	
  al.	
  (2008)	
  10	
   60	
   NA	
   26	
  
Slater	
  et	
  al.	
  (2008)	
  7	
   300	
   NA	
   20	
  
Rohde	
  et	
  al.	
  (2011)	
  11	
   {420,[0,10,40,120]}	
   NA	
   17	
  

Sanchez-­‐Vives	
  et	
  al.	
  (2010)	
  12	
   NA	
   NA	
   20	
  
Tsakiris	
  et	
  al.	
  (2008)	
  13	
   2.3	
   NA	
   17.5	
  

IJsselsteijn	
  et	
  al.,	
  (2006)	
  14	
   450	
   NA	
   30	
  
Hohwy	
  et	
  al.	
  (2010)	
  15	
   {10,30,60}	
   [500,1000]	
   NA	
  
Durgin	
  et	
  al.	
  (2007)	
  16	
   120	
   NA	
   15	
  
Ehrsson	
  et	
  al.	
  (2005)	
  17	
   {30,60}	
   NA	
   15	
  
Morgan	
  et	
  al.	
  (2011)	
  18	
   300	
   NA	
   15	
  
Shimada	
  et	
  al.	
  (2009)	
  19	
   180	
   [100,600]	
   15	
  
Dummer	
  et	
  al.	
  (2009)	
  20	
   600	
   NA	
   NA	
  
Ocklenburg	
  et	
  al.	
  (2010)	
  21	
   180	
   NA	
   17.5	
  

Schütz-­‐Bosbach	
  et	
  al.	
  (2006)	
  22	
   NA	
   NA	
   NA	
  
Zopf	
  et	
  al.	
  (2011)	
  23	
   120	
   NA	
   20	
  

Tsakiris	
  et	
  al.	
  (2007)	
  24	
   125	
   [500,1000]	
   15	
  
Lopez	
  et	
  al.	
  (2010)	
  25	
   60	
   NA	
   24.5	
  

Mean	
  ±	
  SD	
    174 ±168  650 ± 200  25±14
{Min,	
  Max}	
   {2.3,600}	
   {100,1000}	
   {15,67.5}	
  

Supplementary	
   Table	
   2.	
  Comprehensive	
   summary	
  of	
   experimental	
  parameter	
   ranges	
  used	
   in	
  
previously	
   reported	
   rubber	
   hand	
   illusion	
   setups	
   as	
  well	
   as	
   in	
   the	
   present	
  work.	
   Note	
   that	
   the	
  
range	
   of	
   parameters	
   used	
   in	
   the	
   present	
   study	
   encompasses	
  most	
   of	
   the	
   previous	
   setups.	
  NA	
  
indicates	
  that	
  the	
  corresponding	
  information	
  was	
  not	
  provided	
  by	
  the	
  article	
  or	
  was	
  unclear	
  from	
  
the	
  methods	
  description.	
  The	
  bottom	
  row	
  summarizes	
  the	
  distribution	
  of	
  the	
  parametric	
  ranges	
  
(ignoring	
  NA	
  values).	
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Abstract 

The feeling of controlling our movements (sense of agency, SOA) is of 
major legal and ethical importance. Investigating SOA for brain-machine 
“actions”, where sensory consequences were generated without any body 
movements using a brain-machine interface, we describe the limits of 
conscious control when humans are merged with a machine. 
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Human action is associated with a sense of agency (SOA) characterized 

by the feeling that oneʼs movements and their consequences are self-

generated(1). SOA has been related to moral responsibility (2) and is of major 

legal and ethical importance as societies hold individuals responsible for their 

actions and consequences. Recent advances in brain-machine interfaces (BMI) 

have made it possible to decode cortical activity to generate machine-controlled 

actions without concomitant bodily action(3,4). Though it is likely that in the future 

many patients and healthy individuals will be fitted with BMIs to restore and 

augment movement capacity(5), we currently lack understanding of whether such 

machine or BMI-actions rely on the same brain mechanisms as those described 

for body-driven actions and whether similar legal accountability ought to be 

ascribed. As SOA has been shown to decrease when spatial and temporal 

conflicts are inserted between bodily actions and their sensory consequences(6), 

here we test the SOA while introducing conflicts between decoded brain activity 

(using a real-time, non-invasive, BMI(7)) and its resultant sensory consequences 
(a visual feedback signal). 

To test SOA for BMI-actions, participants were trained to imagine left or 

right hand clasping to move a visual cursor to the left or right of a screen, 

respectively. In a first experiment, we injected a delay (six delays ranging from 0-

3750ms at 750ms intervals) between the decoded cortical activity and its visual 

consequences on a trial-by-trial basis (“visuo-neural delay”). We additionally 

tested spatial conflicts by manipulating the direction of the cursor to be either 

congruent or opposite (incongruent) to the trained directional association (e.g. for 

incongruent trials, participants imagined left hand clasping but the cursor moved 

to the right). For each trial, we measured real-time classification performance and 
gauged SOA for the BMI-action(7).  
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We found that SOA is high for congruent and low for incongruent feedback 

and that SOA depends differently on delay for congruent and incongruent trials 

(F(5,7)=5.76;P=0.001;Fig.1A). Namely, SOA significantly decreased from 84% to 

58% with increasing delay for congruent trials (P=0.001), but was not significantly 

modulated for incongruent trials (20-34%;P=0.13). These results show that 

humans report feeling a SOA for congruent BMI-actions, but that SOA decreases 

as a function of visuo-neural delay and is strongly diminished in the presence of 

prominent spatial conflict (in a delay-independent manner). These findings are 

comparable with studies introducing visuo-motor delays and spatial conflict upon 

bodily actions(8), suggesting common brain mechanisms for body-driven and 

BMI-actions.  

Average BMI classification performance remained high and showed no 

difference across experimental conditions (M=76.7,SEM=3.1,F(5,7)=1.36;P>0.25; 

Fig.1B). EEG analysis on the statistically-derived classification features and 

frequency power changes showed that participants modulated the expected mu-

/beta-band oscillations over bilateral sensorimotor cortex to control the cursor 

movements in all experimental conditions (Fig.1C;Fig.S1). Thus, the changes in 

SOA cannot be accounted for by differences across conditions in the decoder 
performance. 

Next, we tested if there was a relationship between classification 

performance and SOA on a trial-by-trial basis. Applying methods from 

psychophysics(7), we fit psychometric SOA curves to classification performance 

for the two extreme delay conditions (separately for congruent and incongruent 

trials;Fig.1D). For congruent trials, this analysis revealed that low classification 

performance was associated with low SOA and high performance with high SOA. 

For any fixed classification performance, delay insertion led to a decrease in SOA 

(point of subjective equality (PSE) shift: 43.4% to 62.1%;P=0.015;Fig.1E). Thus, 

for participants to report an equivalent SOA in delayed trials, they needed to 

remain longer in the brain state associated with the learned BMI-action 
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consequence. Furthermore, delay insertion resulted in higher SOA variance 

(decrease in the absolute slope of the psychometric curve; P=0.03). Incongruent 

trials showed the reversed pattern (low classification performance: high SOA; 

high performance: low SOA), though delay had similar effects on the PSE (shift: 

50.7%-62.9%; P=0.02;Fig.1E) and variance of SOA responses (absolute slope 

decrease; P=0.04). Taken together, this shows that although classification 

performance was not influenced by visuo-neural delay (Fig.1B), delay alters the 

trial-by-trial relationship between classification performance and SOA (Fig.1D). 

These data for incongruent trials also show that low classification performance 

can be associated with high SOA. This suggests that SOA for incongruent BMI-

actions may be based on congruence between the actual and the intended 

(cued) cursor direction rather than comparison between oneʼs brain state and the 

resultant sensory consequences, and highlight a potential importance of 
reconstructive accounts of SOA(1) for BMI-actions.   

As SOA for bodily actions is normally tested for delays <1s, we next tested 

in an independent subject sample whether our findings extend to shorter visuo-

neural delays (6 delays: 0-1s in 250ms intervals and 3.75s). This analysis 

confirmed the effect of delay on SOA (F(5,6)=7.82;P=0.0001;Fig. S2A), but 

showed that delays below 1s do not modulate SOA judgments, as is observed for 

body-driven actions. Again, classification performance did not vary across the 

tested delays and BMI control was driven by mu-/beta-band modulation over 

bilateral sensorimotor cortex (Fig.S2B-C). Additional EMG recordings excluded 

that SOA judgments for BMI-actions were associated with minor limb movements 
or covert muscle contractions (Fig.S2D). 

Avoiding earlier confounds related to proprioceptive and motor signals that 

accompany bodily actions, our data show that BMI-actions that are driven by 

decoded brain activity are associated with a robust SOA. Although, the SOA 

pattern generally followed that for bodily actions, it was less sensitive to delay (if 

compared to body-driven actions) and in some incongruent BMI-actions 
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associated with low classification performance. These similarities and differences 

in the psychology of BMI-actions need to be investigated and may inform societal 

decisions pertaining to legal responsibility as well as ethical concerns as humans 

progressively merge with machines in the quest for repair, substitution, and 
augmentation. 
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Figure 1. (A) Sense of agency (SOA) and (B) classification performance (CP) as 
a function of visuo-neural delay and congruency. (C) Normalized, per channel 
spatial pattern weights for left and right motor imagery in a prototypical 
participant. (D) SOA as a function of CP at zero and high (3.75s) delay for 
congruent and incongruent trials. Data points represent mean SOA across all 
participants in 4% CP bins. Curves indicate best-fit logistic regression. (E) Point 
of subjective equality for each psychometric curve in (D). In all panels, error bars 
and shaded regions indicate SEM. * indicates difference (p<0.05) between two 
conditions. 

 

125



Supplementary Materials 

Brain-machine interface training procedure 
Participants (study 1: N=8, 2 females, all right handed, aged 26.5 ± 3.5 years 

mean±SD; study 2: N=7, 7 males, 1 left-handed, aged 26 ± 2.3 years) first 

trained to perform a lateralized motor imagery task without visual feedback (9). A 

left or right directional cue (40 trials: 20 left, 20 right) indicated to imagine 

clasping the left or right hand, respectively. Coefficients for a binary linear 

classifier were computed and used in a second training phase with visual 

feedback in which participants were instructed to move a cursor to the cued edge 

of the screen using the trained motor imagery association. After each training 

block of 40 trials (20 left cues, 20 right), sufficient control of the cursor was 

judged by measuring real-time classification performance (percentage of time 

steps classified in the direction of the cue) on a trial-by-trial basis. If participants 

were unable to achieve >75% mean performance across trials in the training 

block and did not verbally report that they felt able to move the cursor in a 

desired direction, the full training procedure was repeated until these criteria were 

met (generally 1 to 4 training blocks of 40 trials). This procedure was repeated up 

to five training blocks, after which participants still unable to sufficiently control 

the cursor were dismissed and did not take place in the experiments (study 1: 

two participants; study 2: six participants).  

EEG data processing 

27-channel electroencephalography (EEG) was sampled at 128 Hz (g.tec, 

Schiedelberg, Austria). Electrodes were centered over sensorimotor cortex, 

grounded with an additional electrode placed on the forehead, and re-referenced 

to an electrode attached to the right earlobe. Electrode placement and data 

processing methods are described in further detail elsewhere (10). 

Offline Classifier Computation 
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EEG data from the motor imagery period of the classifier training session were 

visually inspected for eye blink and muscular artifacts and trials with artifacts 

were removed. In study 2, we combined non-artifacted trials from the two most-

recent classifier training sessions to further increase the robustness of the 

classifier. Thus, the number of artifact-free trials used to train the per-subject 

classifiers was 38 ± 2 (mean ± SD) for study 1 and 51 ± 14 for study 2. 

Data from the training session was used to compute common spatial patterns 

(CSPs) for each subject (11). In study 1, CSPs were computed for motor imagery 

data from a fixed window (0.25 – 1.25s following the directional cue). In study 2, 

we further optimized the CSPs by selecting a per-subject window position that 

maximized the classification performance on the training set (from a 1.5s window 

at 0.5s intervals, between 0.25 – 4.25s following the cue).  

Next, feature vectors were constructed by bandpass filtering the raw EEG in the 

α/μ and β frequency bands (8 to 30 Hz), re-projecting the data through the first 

two and last two CSPs, and then computing the log variance in each dimension 

of the filtered signals. The per-subject classifiers (linear discriminant analysis 

(12)) and per-subject CSPs were only computed during the classifier training 

phase without visual feedback and were held fixed throughout the remainder of 

the experiment. 

Real-time Preprocessing, Classification, and Visual Feedback 

Real-time EEG data were bandpass filtered, projected through the offline-

computed CSPs, and log variance was taken (Simulink, Mathworks, Natick, 

Massachusetts, USA). Visual feedback was provided in the form of a cursor that 

could move to the left or right of its current position with a velocity proportional to 

the magnitude of the distance of the feature vector from the linear decision 

boundary (13-14). The cursor trajectory was additionally smoothed by applying a 

sliding mean (1s window) to the log variance. Features were computed for each 
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EEG sample and fed to the classifier, resulting in classifier output (translated to a 

new cursor position) every ~8 ms.  

 

In both studies the visual consequences were manipulated experimentally by 

inserting a buffered delay on the real-time classifier output (study 1: 0 – 3750ms 

at 750ms intervals; study 2: 0 – 1000ms at 250ms intervals and 3750ms). Thus, 

the cursor position was updated at every time step, but could be updated from 

classifier output representing ongoing brain activity from up to 3750ms prior to 

the current time step. In study 1, an additional manipulation of cursor direction 

was made: for incongruent trials, classifier output was multiplied by negative one, 

resulting in an inverted velocity mapping between classifier output and cursor 

position with respect to the learned directional association.  

 
Verification of BMI Control Signals 

To ensure that participants used sensorimotor rhythm modulation rather than 

non-EEG artifacts to control the cursor, we plotted topographies of the 

statistically derived common spatial pattern filter weights for single subjects (Fig. 

1C, S1A, S2C). For all individual subjects and in both studies, the resulting 

spatial filters showed focalized importance of electrodes C3 and C4 (located over 

left and right sensorimotor hand regions) in discriminating between left and right 

motor imagery (for more on spatial interpretation of CSPs see (11)).  

 

We next verified the presence of classical electrophysiological neuromarkers of 

motor imagery during real-time cursor control, namely the suppression of 

sensorimotor mu/beta band-power (8 – 30 Hz) in contralateral versus ipsilateral 

imagery (9). To do so, we first computed the mu- and beta-band power spectral 

density for all participants (Fast Fourier Transform; Matlab, Mathworks, Natick, 

Massachusetts, USA) during the cursor control period separately for left and right 

imagery trials and in electrodes lying in close proximity to sensorimotor hand 

regions (C3 and C4) as well as in a central control electrode (FCz). Next, we 
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computed the log power ratio (LPR) of contralateral versus ipsilateral imagery 

trials and took the mean across participants (Fig. S1B). Thus, the LPR indicates 

the relative power modulation between right imagery trials as compared to left 

imagery trials (at electrode C3) and left imagery trials as compared to right 

imagery trials (at electrode C4). The LPR at the control electrode was taken as 

left imagery versus right imagery. Finally, since a LPR of 0 indicates no 

difference in the PSD between contralateral and ipsilateral motor imagery trials, 

we performed two-tailed t-tests (Bonferonni corrected for multiple comparisons) 

of the LPR distributions against a distribution with mean 0. This analysis showed 

suppression in contralateral imagery trials as compared to ipsilateral trials, as 

evidenced by suppressed LPRs in channels C3 (-1.08±0.24 mean±SEM; P = 

0.003) and C4 (-1.02±0.33 mean±SEM; P = 0.018), but not in the control 

electrode FCz (0.098±0.14 mean±SEM; P = 0.5). 

 

Finally, we verified by visual inspection and electromyography (EMG; study 2) 

that cursor control was not based on limb muscle artifacts. EMG activity was 

sampled at 128Hz from electrode pairs placed on the left and right forearm flexor 

muscles midway between the wrist and elbow. The EMG signals were rectified 

and an average amplitude ratio was constructed against maximum voluntary 

contraction (MVC) for left and right directions (14). The resulting EMG ratios are 

plotted in Figure S2D and shows low ratios for all participants, suggesting that 

overt muscle contractions were not used to control the cursor. Moreover, for 

illustrative purposes, Figure S2E displays single EMG traces during cursor 

control (motor imagery) and overt movements (MVC) for participant 2 in sample 
left- and right-cued imagery trials. 

 

Measurements and statistical analyses 

SOA was gauged on a trial-by-trial basis with a two-alternative, forced-choice 

response (yes/no) to: “I felt as if I were controlling the cursor I saw on the 

screen.” Binary responses were transformed into a percentage of yes answers, 
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resulting in a single percentage per subject, per experimental condition. 

Classification performance was taken as the percentage of time steps the real-

time classifier output corresponded to the cued direction during cursor control, 

regardless of where the (potentially) manipulated visual cursor was displaced. 

Thus, classification performance can also be considered as an indicator of the 

percentage of time that participants spend in the brain state associated to the 

learned coupling between BMI-action and consequence.  

Statistical Analyses 

Differences in SOA responses and classification performance across 

experimental conditions in study 1 were assessed using a 2x6 repeated-

measures ANOVA with factors Direction x Visuo-neural Delay. After observing a 

significant interaction, we separately analyzed congruent and incongruent trials 

with 1x6 repeated-measures ANOVAs to test for an effect of delay. For any main 

effects we used post-hoc two-tailed, paired t-tests to test for differences across 

individual experimental conditions. Statistical results from studies 1 and 2 can be 

found in Table S1. 

To reconfirm the effect of delay on SOA, we also performed linear regression 

separately on congruent and incongruent trials and found that SOA decreases 

with increasing delay for congruent (r2 = 0.25, P < 0.001), but not for incongruent 

trials (r2 = 0.08, P > 0.05).  

Psychometric analyses 

To test for an explicit relationship between SOA and classification performance 

on a trial-by-trial basis, trials were pooled across participants and binned (2% 

classification performance width) such that each SOA response was paired with 

its corresponding classification performance in four conditions: 1) congruent, no 

delay; 2) congruent, high delay (3.75 s); 3) incongruent, no delay and 4) 

incongruent, high delay. For study 2, only the first two conditions were 
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considered. Psychometric curves were then fit to the binned group data in these 

four conditions using binomial, logistic regression (glmfit logit function, Matlab, 
Mathworks, Natick, Massachusetts, USA).  

 

For each of the four conditions, two measurements were collected from the 

psychometric fits. First, the point of subjective equality (PSE) was taken as the 

classification percentage closest to 50% SOA (resolution 0.001%). Second, we 

measured the sensitivity (slope) of the psychometric fit (15). Standard errors on 

these values were obtained using the bootstrap method with 10,000 iterations 

and statistical differences across conditions were assessed using a one-tailed 

bootstrap test (16).  
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Supplementary Tables 
 
Table S1. Statistical results for sense of agency measures in Study 1 and 
Study 2. All statistical contrasts used to assess differences across experimental 
conditions in SOA judgments (see Statistical Analyses above for details). For all 
pairwise T-test contrasts, only significant differences (P < 0.05) are reported. 
 
 
Study 1 

 
F / t 

 
P 

  
Study 2 

 
F / t 

 
P 

2 x 6 ANOVA 
   Interaction 
   Direction 
   Delay 

 
5.76 
43.3 

-- 

 
0.001 

< 0.001 
> 0.6 

  
1 x 6 ANOVA 
   effect of delay 
   (congruent trials) 

 

 
 

7.817 

 
 

0.0001 

 
 
1 x 6 ANOVA 
   effect of delay 
   (congruent trials) 
 

 
 

 
5.33 

 
 

 
0.001 

  
T-Tests: 
   0 > 3.75s 
   0.25 > 3.75s 
   0.5 > 3.75s 
   0.75 > 3.75s 
   1 > 3.75s 

 
 
 

all 
> 2.86 

 
 

 
 
 

all 
< 0.03 

 
 
 

   
1 x 6 ANOVA 
   effect of delay 
   (incongruent trials) 
 

 
 

1.87 

 
 

0.125 

    

 T-Tests: 
  congruent > incongruent 
  (at all delays) 
 

 
all 

> 3.77 

 
all 

< 0.007 

    

T-Tests: 
   (within congruent) 
   0 > 3s 
   0 > 3.75s 
   1.5 > 3.75s 
   2.25 > 3.75s 
   3 > 3.75s 

 
 
 

all 
> XXX 

 
 

 
 
 

all 
< 0.03 
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Supplementary Figures 

Fig. S1.  

Cursor control driven by bilateral sensorimotor mu- and beta-band 
modulation. (A) Normalized common spatial pattern weights for each electrode 

during left and right motor imagery for each participant (S1-S8) in study 1. On 

each map, ʻ+ʼ labels are placed over electrodes C3 and C4 for orientation. (B) 

Contralateral divided by ipsilateral power ratios (LPR) for 8 – 30 Hz oscillations at 

electrodes C3, C4, and control electrode FCz. * indicates significant suppression 

(P < 0.05; two-tailed T-test) with respect to an LPR of 0 (i.e. no difference 

between ipsilateral and contralateral power). Error bars represent SEM. 
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Fig. S2.  

Study 2 results. (A) Sense of agency and (B) classification performance as a 

function of visuo-neural delay. (C) Per-subject, normalized spatial filter weights 

for each electrode during left and right motor imagery for study 2. On each map, 

ʻ+ʼ labels are placed over electrodes C3 and C4 for orientation. (D) Mean 

electromyographic (EMG) activity of left and right forearm flexor muscles during 

motor imagery. Activity was averaged across trials and conditions for each 

subject and a ratio was computed to their maximum voluntary contraction (MVC), 

resulting in very low ratios (all < 2%). (E) Sample EMG traces from participant 2 

during left and right cursor control and during MVC trials. In all panels, error bars 

and shaded regions indicate SEM. 
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4. General Discussion
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In this final chapter I begin with a summary of the cumulative results presented in 

the adjoined scientific articles. I then take a quick detour to introduce ongoing 

research and preliminary results from studies that I believe to be of additional 

relevance to the methods and message of this thesis. Next, I provide a more in-

depth discussion, exploring the present findings and their relationship to 

ownership and agency in different or complementary contexts than those 

discussed in the articles. Along the way, I hint at unresolved issues and propose 

specific follow-up experiments that could address these open questions. Lastly, I 

finish with an outlook on future research directions emerging from an established 

link between cognitive neuroscience and BMIs. 

4.1  Summary of main results 

One critical step of this thesis involved the design and implementation of an 

automated, virtual reality setup to induce the RHI. In three independent 

subject samples (Study 1: pilot and main studies; Study 3) we verified that our 

novel technical setup induced the effects associated with traditional RHI setups, 

such as proprioceptive drift and changes in ownership as measured by subjective 

reports (Botvinick and Cohen, 1998; Tsakiris and Haggard, 2005; Makin et al., 

2008; Blanke, 2012). These encouraging results led to a series of experiments on 

illusory ownership that exploited the advantages of a programmable setup, 

including simultaneous induction of illusory ownership over two hands (Study 1 

and Study 2) and systematic manipulation of sensory cues for testing a 
probabilistic model (Study 3).  

Using this setup, we measured electrical brain activity while inducing the 

RHI and found that illusory hand ownership led to body-selective and 

synchrony-dependent modulation in mu-band activity over bilateral fronto-

parietal regions (Study 1; Evans and Blanke, 2012). In the same participants, 

we measured EEG activity during a lateralized motor imagery task and found it 

to elicit a classical pattern of mu- and beta-band changes over bilateral 
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sensorimotor cortex (Pfurtscheller et al., 1997a; Pfurtscheller and Neuper 

2001). Finally, overlap analysis showed illusory ownership and motor imagery 

to recruit shared anatomical networks and to be characterized by similar 
electrophysiological signatures. 

We then extended this study to assess whether induction of illusory 
ownership over the virtual hands altered the ability to decode single-trial 
motor imagery in a traditional non-invasive BMI task (Study 2; Evans and 

Blanke, in preparation). Indeed, classification performance was boosted in 

the illusion condition as compared to asynchronous stimulation on visual control 

objects and this effect was found for the majority of individual subjects. Despite 

these promising results, classification performance was globally maximal in a 

baseline condition where no visuo-tactile stimulation and no ownership induction 
was provided during motor imagery. 

Again exploiting our automated setup to record a large number of hand 

localizations across a wide range of systematically varied parameters, we 

were able to show the most comprehensive view to date of the complex 

relationship between trimodal sensory cues (visual, proprioceptive, tactile) and 

the recalibration of perceived hand position as measured in the RHI (Study 3; 

Rezende et al., submitted). Our rich data set showed that perceived hand 

position is biased by visual or proprioceptive cues if the visuo-proprioceptive 

hand separation is small or large, respectively. Importantly, at intermediate visuo-

proprioceptive separations, the ownership illusion breaks down discontinuously 

such that sometimes they perceive their hand near where they see their hand, 

and sometimes near where they feel their hand. We additionally described a 

hierarchical, Bayesian multisensory integration model to explain the 

computational underpinnings of the emergence of illusory ownership in the RHI. 

This model accurately predicted both the mean and variance of the empirically 

measured proprioceptive drifts and allowed us to extract the stimulation 
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conditions necessary for the recalibration of perceived hand position, on a 
subject-by-subject basis.  

In a second series of experiments, we investigated the sense of agency 

(SOA). By injecting a delay between decoded cortical activity and its visual 

consequences (using a real-time, BMI-controlled cursor), we demonstrated that 

SOA extends to machine-generated BMI-actions. Furthermore, BMI-actions -- 

actuated in the absence of proprioceptive and tactile reafferent signals -- 

were found to be sensitive to the comparison between predicted and actual 

consequences and therefore resemble SOA for bodily actions (Study 4; Evans 
et al., submitted). 

4.2 Sense of agency when effects precede actions: ongoing work 

In ongoing work, we manipulated the temporal ordering of motor movements 

(finger deflection) and their visual sensory consequences (virtual finger 

deflection) to probe the SOA for a wide range of action-consequence temporal 
couplings (Evans et al., in preparation).  

Motivation and Background 

By injecting delays between bodily movements and their sensory consequences, 

several studies have demonstrated that SOA depends on the temporal 

coherence of the action and its effect (Fourneret and Jeannerod, 1998; Sato and 

Yasuda, 2005; Sato, 2009). Relatedly, previous work in the time perception of 

volitional movements has confirmed a shift in the temporal perception of actions 

towards their effects and vice versa (intentional binding; Haggard et al., 2002; 

Eagleman and Holcombe, 2002; Ebert and Wegner 2010; Cravo et al., 2009; for 

a review see Moore and Obhi, 2012). However, to our knowledge, all previous 

paradigms investigating SOA and the perception of the temporal relationship 

between actions and their sensory consequences have assumed a particular 

causal relationship: that actions lead to effects. Here, we wondered whether SOA 
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could be felt for movements in the artificial case where this ordering is inversed; 

namely, when sensory effects precede their corresponding movement. To test 

this, we predict voluntary motor movements (finger deflections) and provide 

visual sensory consequences that precede them (negative delay). Furthermore, 

in the same participants, we test the standard temporal ordering, investigating 

trials where motor movements precede their visual consequences (positive 

delay). By performing hundreds of 

trials per participant and utilizing 

methods from psychophysics, we fully 

characterize SOA as a function of the 

temporal offset between visuo-motor 

actions and effects, offering a 

comprehensive view of the 

dependence of SOA on the temporal 
coherence of action and effect. 

Methods 

Participants sat at a table and placed 

their right hand on a block containing a 

haptic sensor. This sensor allowed for 

detection of an index finger deflection 

at millisecond precision (movement 

onset time). Vision of their real hand 

was occluded by a stereo monitor that 

projected a virtual hand co-localized 

with their real hand (Figure 14). The 

virtual hand could be animated to 

produce a finger deflection (visual 
onset time).  

Figure 14: Testing sense of agency when 
sensory consequences precede their 
corresponding actual movement. Subjects sat 
at a table and saw a 3D arm projected co-
localized with their (occluded) real hand. 
Participants performed voluntary finger 
deflections and saw visual consequences 
(animated finger deflections). Using a haptic 
sensor and predictive algorithms, some trials 
resulted in movement onsets preceding the 
visual consequences (positive delay) and others 
where the visual consequences preceded the 
movement (negative delay). After each trial 
participants answered whether or not the 
movement they saw corresponded to the 
movement they made.  
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In a short training block, participants learned to make finger deflections 

that mirrored the velocity and amplitude of the animated finger. In these trials, no 

delay was inserted between the finger movement and the animation. In the main 

experiment, participants (behavioral study 1: N=14, 300 trials per subject; EEG 

study 2: N=10, 600 trials per subject) were instructed to lift their finger at the time 

of their choosing. Using dynamic predictive algorithms based on per-subject 

movement history profiles, we anticipated the movement onset time with the 

intention of providing visual consequences just prior to that moment. If 

participants moved prior to the visual onset triggered by the predictive algorithm, 

the visual consequence was presented within a small window (0 to 750 ms). For 

each trial, participants answered a forced-choice (yes/no) question about whether 

the movement they saw corresponded to the movement they made. To 

summarize, a given trial consisted of both a visual and a movement onset time 
and the corresponding SOA response.  

Results 

We reasoned that if SOA is 

influenced by the causal ordering 

of action and effect, the function 

defined by SOA and the difference 

in onset time between the 

movement and visual animation 

(ΔT; negative values indicate visual 

cues precede movement, positive 

values indicate the inverse) would 

not be a symmetric. Said differently, 

we hypothesized that psychometric 

SOA responses would not be 

mirrored across the moment of 

Figure 15: Sense of agency as a function of 
visuo-motor delay. SOA (% yes answers; binned at 
25 ms) as a function of ΔT for Study 2. ΔT is taken 
as the difference in time between their movement 
onset and the visual consequences (where negative 
values indicate visual precedes movement, positive 
values indicate the inverse). A line is drawn at peak 
SOA for this group data.  
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perfect visuo-motor coherence (ΔT=0). To test for this, binary SOA responses 

were binned (25 ms width) and transformed into percent yes answers (Sato and 

Yasuda, 2005; Figure 15). Two analyses were then conducted to test for 

symmetry. First, we found the ΔT that corresponded to the per-subject SOA peak. 

This analysis revealed that maximum SOA for all subjects across both studies 

was shifted to positive ΔT, that is, peak sense of agency was experienced when 

finger movements preceded their 

visual consequences (Figure 16). 

This observation was statistically 

confirmed as we found ΔT to be 

significantly shifted from ΔT=0 

(study 1: 82±13 ms mean±SEM; P 

< 0.0001; study 2: 73±17ms; P = 
0.002; two-tailed t-test). 

Next we assumed that the 

peak SOA found in the first 

analysis corresponded to 

participants perceived simultaneity 

between the two sensory cues 

(motor, visual). Under this 

assumption, we split the data into 

events happening before this 

moment of unity (negative delays) 

and those happening after (positive 

delays) to test whether the 

perceptual SOA responses were 

more sensitive to causal order. By 

fitting psychometric curves to 

negative and positive delays 

Figure 16: Peak sense of agency experienced 
when movements precede their sensory 
consequences. We found maximum SOA 
responses to occur with a delay with respect to the 
objective simultaneity of the visual and motor events. 
Top: Per-subject ΔT corresponding to their peak 
sense of agency (SOA). All participants showed peak 
SOA values shifted from simultaneous (ΔT=0) toward 
positive ΔT, and Bottom: mean values across both 
studies show a significant positive shift from ΔT=0. 
Error bars represent SEM.  
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separately (Figure 17 left) we found a significant change in sensitivity (absolute 

slope; P < 0.0001; Figure 17 right). This result indicates that participantsʼ SOA is 

more sensitive to negative delays (reversed causal order) than positive delays, 

and that there is less variance in perceptual SOA responses when sensory 
effects precede their causes. 

Summary 

Using predictive algorithms, haptic sensors, and virtual reality feedback, we were 

able to show that SOA can also be felt for movements in the artificial case where 

the visual consequences of voluntary finger deflections temporally precede the 
actual (proprioceptive) movement (henceforth referred to as negative delay). 

Figure 17: Sense of agency is sensitive to causal ordering. Left: Psychometric fits 
(binomial logistic regression) to group data from Study 2. Negative delays are defined as 
events where visual sensory consequences occur before perceived simultaneity (peak SOA) 
and positive delays where they occur afterward. Psychometric responses for positive delays 
show characteristic responses (Farrer and Jeannerod, 2008), namely that SOA decreases as 
a function of increasing ΔT. Right: Absolute slope obtained from the fit coefficients for 
negative and positive delays in Study 2. Error bars represent SEM. Negative delays show a 
much larger slope, indicating that SOA is sensitive to the causal ordering of action and effect. 
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In two independent subject samples, we showed that SOA is asymmetric and 

dependent on the temporal order and delay between actions and their 

consequences. In particular, peak SOA was found to be significantly shifted 
from zero visuo-motor delay, corresponding to the trials where movements 

preceded their sensory consequences (by approximately 75 ms). Interestingly, 

we also found that participants exhibit a SOA for movements in the artificial 

situation when sensory effects precede the actual movement (negative 

delay; 50% agency at 100 ms), but that the perceptual mechanisms of SOA for 

these negative delays are much more sensitive than for positive delays. Though 

further study is needed to characterize the observed temporal ordering 

asymmetry of SOA, this work demonstrates the potential for combining novel 

techniques and technologies compatible with electrical neuroimaging to generate 
implausible experimental settings in order to test the limits of SOA.  

4.3 Towards precise and programmed experimental setups in the 
cognitive neuroscience of bodily self-consciousness 

One of the main contributions of this thesis is its emphasis on mixing haptic and 

virtual reality technologies toward designing novel illusory hand ownership and 

agency paradigms, supporting recent interest in virtual reality and robotics as 

multipurpose tools for psychological and neuroscientific research (Bohil et al., 

2011; Lenggenhager et al., 2011; Slater et al., 2008; Sanchez-Vives and Slater, 

2005; Tarr and Warren, 2002; Riva, 2007; Ionta et al., 2011). In addition to 

eliciting comparable effects to those reported with previous setups that induced 

unilateral hand ownership with experimenter-applied, manual visuo-tactile 

stimulation (Botvinick and Cohen, 1998; Ehrsson et al., 2004; Tsakiris & Haggard, 

2005; Lloyd, 2007; but see Schütz-Bosbach et al., 2009), our setup allowed us to 

move beyond the limitations of manual stimulation toward difficult or otherwise 

impossible to achieve stimulus configurations. For instance, using our setup we 

could apply bilateral or multiple hand stimulation, or to systematically manipulate 
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multiple sensory cues over hundreds of trials with millisecond and centimeter 

precision (as in Study 3). Furthermore, automated setups require explicit 

definition of stimulation-related parameters. Well-defined spatio-temporal 

parameters will facilitate precision as well as the comparison between 

experimental conditions, subjects, and future studies from different laboratories 
(see also Section 4.6.3). 

Concerning the efficacy of our automated setup, previous literature reports 

proprioceptive drifts of around 2 to 3 cm (Tsakiris and Haggard, 2005; Tsakiris et 

al., 2007; Slater et al., 2008), whereas our setup elicited strong recalibrations of 

perceived hand position of up to 12 to 13 cm (Study 3). Despite these 

achievements, future work might investigate how to boost the magnitude of 

illusory ownership and agency (as measured by subjective reports and objective 

measures) by providing additional or enhanced sensory feedback. For example, 

ownership experience or agency over virtual or robotic devices may be boosted 

by combining real-time hand tracking with visual animations to provide dynamic 

visuomotor congruencies (Sanchez-Vives et al., 2010), or by selectively 

activating different or additional cutaneous mechanoreceptors via haptic and 

robotic interfaces that apply pressure, tapping, or continuous brush sensations 

(Marasco et al., 2011; Schütz-Bosbach et al., 2009). The immersive quality of 

visual virtual stimuli can be enhanced by closer collaboration between cognitive 

neuroscientists, graphical animators and 3D modelers that use advanced 

shading, texturing, and 3D rendering techniques (Sanchez-Vives and Slater, 

2005). However, it should be noted that given our results and those mentioned 

above, perfect visual realism does not seem to be a prerequisite to induce 
illusory ownership (Study 1, 2, and 3) or agency (Study 4; our ongoing work). 
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4.4 Hand ownership 

4.4.1 Neural mechanisms of hand ownership and their relationship to non-
invasive BMIs 

One of the main contributions of this thesis was the use of common motor 

imagery paradigms to bridge ideas in cognitive neuroscience and BMI research. 

Oscillatory activity in the mu-band over central sensorimotor regions was 

investigated (Study 1) and exploited (Study 2) as a shared neural signature 

between illusory hand ownership and motor imagery. Moreover, central mu-band 

activity was used as a control signal for a non-invasive BMI to test SOA for covert, 
machine-mediated actions (Study 4). 

Our results from Study 1 reinforce previous findings by linking 

electrophysiological modulation due to illusory hand ownership to bilateral 

premotor and posterior parietal cortex (Ehrsson et al., 2004, 2005, 2007) as well

as the postcentral gyrus (Lloyd et al., 2006; Schaefer et al., 2006a, 2006b; 

Ehrsson et al., 2005; Tsakiris et al. 2007; see also Schaefer et al., 2007). 

Moreover, they show that illusory ownership leads to oscillatory modulations in 

same frequency band (mu-band) and same regions (fronto-parietal cortices) 

implicated during imagination of motor movements (Pfurtscheller et al., 1997a, 

1997b, Pfurtscheller & Neuper, 1997; Miller et al., 2010; for a review see Hari and 
Salmelin, 1997). 

Though these overlap analyses revealed strong anatomical and spectral 

similarities in the neural signatures of hand ownership and motor imagery of 

hands, our results hint at three important issues that could be addressed in future 

research. First, future work might explore the relationship between hand 

ownership and other traditional behavioral mental imagery tasks (e.g. mental 

hand rotation; Parsons, 1994; Kosslyn, 2001). Recent data suggest that illusory 

ownership modulates the capacity to imagine hand rotations (Ionta et al., 2012). 

Therefore, it may be interesting to see how these behavioral changes are 

reflected in fronto-parietal mu oscillations. Second, paradigms that provide visual 
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feedback corresponding to imagined motor movements may investigate the 

additional role of visuo-motor contingencies during motor imagery and hand 

ownership (Mercier et al., 2008). Finally, the present work analyzed oscillatory 

effects in an offline situation, averaged across multiple participants. Future 

research is needed to find reliable, online neural indicators of ownership. Our 

work suggests mu-band oscillations to be a likely candidate (Study 1 and 2), but 

it remains to be seen if ownership experience can be predicted at the single-trial 

level or detected in spontaneous, ongoing EEG activity. Such online detection 

would aid in the design of ecological neuroprosthetic devices that adjust control 

to account for ongoing neural measures of ownership (see also Section 4.6.3). 

4.4.2 Boosting BMI performance with multimodal feedback 

By applying our experimental paradigm from Study 1 to a BMI motor imagery 

setting, we found illusory ownership to significantly alter offline, single-trial 

decoding performance (Study 2). Applying limb ownership manipulation in BMI 

contexts represents a first step toward the use of paradigms inspired by cognitive 

neuroscience to inspire the engineering of BMIs. Recent advances in engineering 

have taken permitted researchers to provide closed-loop feedback in BMIs 

(Figure 18), resulting in a growing body of evidence that multimodal, visuo-

proprioceptive feedback can boost BMI performance over unimodal visual 

feedback in invasive BMIs for monkeys (Suminski et al., 2010) and in non-

invasive BMIs in humans (Ramos-Murguialday et al., 2012; Gomez-Rodriguez et 

al., 2011). Importantly, these studies stress that performance is only increased if 

visual and proprioceptive cues are spatially and temporally coherent, and are 

thus in line with findings from cognitive neuroscience showing both limb 

ownership (Makin et al., 2008; Blanke, 2012) and agency (de Vignemont and 

Fourneret, 2004) to depend on both the spatial and temporal coherence of visual, 

proprioceptive, and tactile cues (see also Study 3). Though these engineering 

advances can be explained by findings from a large literature in the cognitive 

neuroscience of body ownership and agency, further collaboration is needed 
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between engineers and neuroscientists to fully characterize the perceptual and 

subjective consequences of such closed-loop control. 

4.4.3 Probabilistic computational models of hand ownership 

Most studies investigating illusory ownership employ parametric designs that 

manipulate unimodal sensory input and discuss its effects on the RHI. In an 

alternative approach, we consider sensory input to be a set of continuous 

trimodal sensory input parameters that, once processed by an optimal Bayesian 

observer, results in the perceptual, illusory effects of the RHI. This approach is 

inspired by evidence that humans optimally integrate sensory information in a 

large range of sensorimotor and perceptual tasks (Körding and Wolpert, 2006; 

Ernst and Bülthoff, 2004; Chater et al, 2006) and represents a more systematic 

Figure 18: Boosting illusory ownership and agency with meaningful sensory feedback. 
Contemporary setups using brain-machine actions to “close the sensorimotor loop” and move 
the body via external devices. Future complex systems will continue to build upon techniques 
from robotics, neuroimaging, and perhaps brain stimulation to provide closed-loop control with 
brain-machine interfaces. Left: A haptic device to clench the actual hand during motor imagery 
of hand movement (from Ramos-Murguialday et al., 2012). Center: A haptic robot designed to 
flex the arm during motor imagery of arm movement (from Gomez-Rodriguez et al., 2011). 
Right: Direct brain stimulation to somatosensory regions to provide artificial tactile sensation in 
monkeys (from OʼDoherty et al., 2011). 
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approach to the conceptual understanding the RHI wherein future empirical 

results can be tested against, assimilated into, or compel revisions to our 
integrative model. 

Alongside analogous models applied to visuo-auditory perceptual illusions 

such as the ventriloquist effect (Körding et al., 2007), this approach offers direct 

insight of how to computationally describe other bodily illusions as studied in the 

cognitive neuroscience of bodily self-consciousness such as full body or body-

swap illusions (Lenggenhager et al., 2007; Petkova et al., 2011; Blanke, 2012), 

numbness illusions (Dieguez et al., 2009), or deformed body part illusions 

(Schaefer et al., 2007). Moreover, as Bayesian theory has been proposed as a 

framework to understand the sense of agency (Moore and Haggard, 2008), 

explicit causal probabilistic inference models such as ours may be described and 

tested against empirical data to validate conceptual hierarchical comparator 
model theories of agency (Pacherie, 2008; Moore and Obhi, 2012). 

Concerning model improvements, it remains to be tested how accurately 

our model can predict ownership sensation given an individual subjectʼs 

multisensory history (Bayesian prior) and the parametric configuration of sensory 

cues. Though our computational model already attributes the likelihood that one 

experiences ownership over an artificial limb on a trial-by-trial basis (for 

applications see also Section 4.6.1), our experimental design split subjective 

reports of ownership (questionnaires) from measurements of perceived hand 

position (proprioceptive drift). Thus, future work may measure both subjective 

reports and hand localizations on a per-trial basis to directly test model-predicted 

ownership against empirical ownership probabilities as well as to test whether 
subjective reports influence hand localization or vice versa. 
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4.5 Agency 

4.5.1 Sense of agency for brain-machine actions 

Consistent with studies that perturb SOA by injecting spatial and temporal 

deviations between bodily actions and their sensory consequences (Fourneret 

and Jeannerod, 1998; Farrer et al., 2008; Sato and Yasuda, 2005), in Study 4 we 

found SOA for BMI-actions to be sensitive to both spatial and temporal 
visuo-neural conflicts. Furthermore, for both types of action, SOA is highest in 

the experimental condition without inserted spatial or temporal conflict. These 

findings therefore suggest that our sense of causal authorship for both types of 

action is based on a set of common mechanisms that do not require direct 

comparison against reafferent proprioceptive and tactile signals (see Section 
4.5.2 below). 

On the other hand, we observed two important differences between 

SOA for bodily and BMI-actions. First, in our experiments, SOA for 

unperturbed BMI-actions (i.e. congruent, no visuo-neural delay) was found to be 

around 80-85%, whereas most studies report entirely unperturbed SOA (i.e. 

100%) for bodily movements in the same experimental condition (Fourneret and 

Jeannerod, 1998; Sato and Yasuda, 2005 Farrer et al., 2008). Second, the 

temporal sensitivity of SOA for BMI-actions was lower with respect to that for 

bodily actions. In our experiments, participants remained insensitive to visuo-

neural delays of less than 1s (second study in Study 4), whereas in the 

aforementioned studies on agency for bodily actions, visuo-motor or visuo-
auditory delays of approximately 300 ms are already sufficient to perturb SOA.  

One potential explanation for these observed differences is that the signal-

to-noise ratio is much lower for BMI-actions than for everyday, over-trained bodily 

actions (such as a reaching movement). A low signal-to-noise ratio for BMI-

actions can be due to both the novelty of the task and to imperfections in the 

neural decoding process. Indeed, recent studies have shown that SOA for bodily 

actions increases with learning of novel motor tasks (van der Wel et al., 2012), 
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but these findings remain to be tested for SOA over BMI-actions. For instance, by 

testing naïve BMI users against expert users, future work may find differences in 
the magnitude of SOA and in temporal sensitivity to visuo-neural conflicts.   

It could also be possible that the observed dissimilarities in SOA between 

bodily and BMI-actions are due to differences in the neural systems underlying 

representations of such actions. To test this, future studies may investigate and 

directly contrast the electrophysiological consequences of SOA manipulation for 

bodily and BMI-actions. Alternatively, one might use our paradigm to manipulate 

agency with combined EEG and fMRI technologies to measure BOLD responses 

during EEG-based BMI control (Halder et al., 2011; Hinterberger et al., 2005) and 

during bodily control for a similar task. Any revealed dissociation in the neural 

structures underlying both types of action may explain the observed SOA 
differences in Study 4.  

4.5.2   Theoretical ramifications 

Tapping into cortical motor representations may be a way of accessing a 

physiological substrate of the transformation process between intention and 

action (Decety, 1996). Decoding and generating actions directly from cortical 

activity creates a novel situation in which experimental paradigms such as those 

presented in Study 4 can test SOA in the absence of re-afferent proprioceptive 

and tactile information. Our approach facilitates the experimental decomposition 

of SOA into its relevant, constituent sensory and neural systems and thus 

provides new potential for the neuroscientific investigation of SOA. In addition, 

measuring agency for BMI-actions can provide a new perspective on the 

engineering of BMIs, namely by guiding technological advances with an 

understanding of the perceptual and subjective experience of BMI control (see 
Section 4.6.2).  
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Do our findings provide deeper insights to the current theoretical models of 

sense of agency? To our knowledge, all previous empirical work on agency has 

focused on testing SOA with respect to bodily movements (Repp, 2005, 2006; 

Repp and Knoblich, 2007; Knoblich and Repp, 2009; Daprati et al., 1997; Daprati 

and Sirigu, 2002; van den Bos and Jeannerod, 2002; Nielsen, 1963; Fourneret 

and Jeannerod, 1998, Franck et al., 2001; Haggard et al., 2002; Knoblich et al., 

2004; Synofzik et al., 2006; Kanape et al., 2010) and several theoretical accounts 

have been put forth to explain these diverse empirical findings on SOA for bodily 

actions (Wegner, 2002; Blakemore and Frith, 2003; Knoblich and Repp, 2009; 
see also introduction Section 1.1.4). 

The sensorimotor comparator model inherently assumes the bodyʼs 

involvement in action generation: SOA depends on the degree of congruence 

between bodily movements (motor commands in efference copies) that are 

Figure 19: A modified sensorimotor comparator model in the context of BMI-actions. 
We tested SOA for machine-mediated actions without accompanying overt bodily movement. 
According to the comparator model, SOA for these BMI-actions must have been generated by 
comparing predicted outcomes against actual outcomes. But where can this prediction arise in 
the absence of bodily movement? We outline here the possibility that participants compared 
their motor intention or plan directly against the re-afferent visual information (cursor 
movements). Figure adapted from David et al., 2008.  
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matched against re-afferent sensory feedback. Our results for actions without an 

associated bodily movement are partially compatible with this account. We found 

SOA for BMI-actions to depend on the degree of visuo-neural delay, paralleling 

findings for visuo-motor (Fourneret and Jeannerod, 1998) or visuo-auditory 

delays (Sato and Yasuda, 2005). Furthermore, the sensorimotor account predicts 

that improved performance should result in higher SOA, as this yields a better 

match between predicted and actual sensory consequences. In line with this 

prediction, our psychophysics results demonstrated that improved classification 
performance was strongly coupled to increased SOA.  

On the other hand, our findings also suggest the need to modify to the 

sensorimotor comparator model to allow for the case where motor signals without 

accompanying bodily movement (e.g. voluntary neural modulation via motor 

imagery) are compared with re-afferent sensory effects (Figures 19 and 20). In 

addition, as it stands, the sensorimotor comparator model cannot explain the 

Figure 20: A modified sensorimotor comparator model in the context of BMI-actions. 
We outline here the possibility that participants compared efference copies that were 
dampened (due to motor imagery) against re-afferent visual information (cursor movements). 
Figure adapted from David et al., 2008.  
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everyday case where SOA is attributed to action representations that are formed 

but no movement is executed and no re-afferent sensory feedback is present (e.g. 

thoughts, action observation, or motor imagery; Jeannerod, 2007; Georgieff and 
Jeannerod, 1998).  

Perhaps speaking more to the present data, the theory of apparent mental 
causation (Wegner, 2002) does not require bodily movements to feel SOA for 

actions. In the context of our experimental setup, this model predicts that a post-

hoc judgment of SOA is made according to whether oneʼs thought to move the 

cursor left was consistent with the subsequent outcome (e.g. the visual cursor 

went to the left). Evidence supporting this theory may come from our 

psychometric analyses for incongruent trials where the visual cursor moved 

opposite to the learned association. In these trials, participants reported a high 

SOA when classification performance was low. Low classification performance 

indicates that the brain activity modulation would normally yield cursor 

movements opposite to the cued direction, yet because we inverted the direction 

of the classifier output, the visual cursor displacements were coincidentally 

consistent with cued direction. Thus, despite this discrepancy between their 

neural activity and its corresponding sensory consequences, participants 

reported high SOA. This suggests that SOA in these trials could not be due to an 

explicit, low-level comparison of the visual and neural signals, as it appears that 
participants lack insight into their own internal neural states.  

Despite these consistencies, our data cannot fully be explained by the theory 

of apparent mental causation. According to the theory, interpretation of the 

source of the actionʼs outcome is subject to the so-called exclusivity principle. 

This principle holds that SOA arises only in settings where action consequences 

can be interpreted without a potential alternative cause. Given our experimental 

setup, this prerequisite to unperturbed SOA is violated; participants were aware 

that the visual feedback was generated from an imperfect decoding of neural 

activity. Thus, discrepancies between oneʼs thought and the subsequent visual 
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cursor displacement could have been interpreted as stemming either from poor 

task performance by the subject or from the computer and its algorithmic and 
hardware flaws. 

Finally, given that our results for SOA over BMI-actions are partially 

compatible with both of the above accounts, it is worth considering our results in 

the context of more-recent, multifactorial theories that allows for comparisons 

between action predictions and consequences to occur at both sensorimotor and 

perceptual levels (Pacherie, 2008; Knoblich and Repp, 2009; Moore et al., 2009). 

This hierarchical comparator model posits that a conglomeration of motor, 

perceptual, and distal cognitive factors all influence SOA. Our data on SOA for 

BMI-actions fits favorably within this umbrella of a conceptual framework, as we 

found SOA to be dependent on low-level congruence between neural signals and 

corresponding visual re-afferences, but also to dissociate under the artificial case 

where the decoder output was inverted. This model has been used to explain 

how a sense of agency can emerge for joint actions for human dyads (van der 

Wel, 2012), a situation that closely resembles the joint action between brain and 
machine necessary for BMI-actions. 

In summary, using BMIs as a platform to research the sense of agency 

opens up a large number of potential research possibilities and provides a novel 

theoretical perspective to help shape conceptual models of SOA. Future studies 

on SOA for BMI-actions can borrow from a considerable literature on SOA for 

bodily actions. For example, studies may test SOA for BMI-actions in 

schizophrenic patient populations, or investigate SOA for BMI-actions in 

alternative or additional sensory re-afferent systems (auditory or proprioceptive; 
e.g. Ramos-Murguialday et al., 2012). 
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4.5.3 Sense of agency when effect precedes cause 

If SOA can indeed be felt for a movement for which no motor efference copy yet 

exists (Section 4.2), our findings imply that any strict temporal ordering of efferent 

motor signals and their subsequent sensory consequences implicit to the 

sensorimotor comparator model must be false. These results seem to rather 

suggest that any predictive comparison mechanism behind SOA must be 

temporally flexible to allow for either efferent or re-afferent signals to arrive first 

and serve as a predictor for the other. On the other hand, we demonstrated that 

SOA is strongly skewed toward positive delays (movement preceding visual 

consequences), and this preferred temporal ordering might be informative of the 

computational mechanisms underlying SOA. Further analysis of electrical 

neuroimaging data captured during this study may reveal neural mechanisms 
that reflect this asymmetry in SOA perceptual judgments.  

4.5.4 Agency in artificial contexts: Implications on legal and moral 
systems  

Responsibility in human moral and legal systems is intrinsically tied to the 

intention of actions, and therefore, the sense of agency (Haggard and Tsakiris, 

2009; Moretto et al., 2011). Societal discourse has begun to acknowledge legal 

liability with respect to the consequences of unconscious bodily movements or 
actions lacking a sense of authorship (Beran, 2002; Mahowald et al., 1990).  

Parallel to these concerns of responsibility and agency for bodily actions, 

our current trend toward technologies that transfer bodily action to machines is 

generating additional ethical and legal challenges. One contemporary issue of 

relevance concerns the push toward military technologies such as drones that 

translate human action into remote, machine-controlled actions. Lethal combat in 

these distanced, disembodied contexts may have strong effects on the 

psychology of killing (Miller, 2012). Yet, of even more significance to the work in 

this thesis, are the ramifications of the blurred boundary between brain and 
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machine in BMI technologies. In BMIs, intentions can be translated into 

potentially dangerous machine-generated actions without any associated overt, 

bodily movement and therefore may present entirely new challenges for moral 

agency (Clausen, 2009; Blanke and Aspell, 2009) and personal identity (Lucivero 

and Tamburrini, 2008). These questions will need to be addressed by 

experimental investigations that directly test our sense of agency for brain-

machine actions for real-time (Study 4) and for future, predictive controllers such 

as those described in our ongoing work on agency. Work in this thesis 

contributes to psychological and neuroscientific research on the brain 

mechanisms of causal authorship, which alongside findings from emerging fields 

such as neuroethics (Farah, 2005) and robotic ethics (Capurro et al., 2009), must 
inform future moral, ethical, and legal stances toward robotic control and BMIs. 

4.6 Knowledge transfer between cognitive neuroscience and BMIs 

Work throughout this thesis has demonstrated examples of the crosspollination of 

ideas between cognitive neuroscience and the neuroengineering of BMIs. Here I 

summarize the mutual benefit of research platforms that take this cross-

disciplinary perspective and I then speculate on how the findings in this thesis 

could be combined into a practical application: cognitive motor neuroprosthetic 

controllers. 

4.6.1   A new approach to cognitive neuroscience 

BMIs offer cognitive neuroscience a unique platform to study brain function, 

providing a novel situation for the multisensory study of action and motor 

representation wherein potentially confounding re-afferent proprioceptive signals 

can be selectively removed from experimental setups. They permit 

neuroscientists to utilize neuroimaging as a tool to provide real-time feedback of 

neural activity, thus providing subjects with insight into their own brain activity 

(Sitarem et al., 2007). Throughout this thesis I have shown how borrowing 
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technological and methodological approaches from BMI paradigms, as well as 

related engineering disciplines such as virtual reality and haptics/robotics, 

benefits cognitive neuroscience with enhanced experimental precision and 

reproducibility (Study 1 and 3; see also Section 4.3) and creates novel 

experimental scenarios (Study 4; ongoing work in Section 4.2). It has been stated 

that engineering approaches to studying the cognitive neuroscience of bodily 

self-consciousness will be of increasing importance for translational research on 

motor neuroprosthetic devices (Rothschild, 2010) and neurorehabilitation 

(Kwakkel et al., 2008), where the detailed description of stimulation parameters 

may be critical for robustness, reproducibility and testing.  
 
4.6.2   A new approach to brain-machine interfaces 
 
Research in BMIs is dominated by an engineering approach where advances are 

generally driven by boosting performance metrics over previously reported 

methods. In an orthogonal approach, cognitive neuroscience attempts to 

understand the neural and behavioral mechanisms of human cognition and 

phenomenology, often by experimentally perturbing normal performance. Despite 

its selective and destructive effects on task performance, these types of 

experimental manipulations shed light on the involved brain mechanisms and can 

yield results that suggest how better performance can be achieved in novel ways. 

Given this, what do the results from the studies in this thesis suggest? Can they 

be synthesized into a realizable system that can be embedded into the design of 
future neuroprosthetic devices? 

4.6.3 Design of cognitive motor neuroprosthetics 

Based on the present findings, I argue that the automated induction and online 

measurement of illusory hand ownership (Study 1, 2, and 3) as well as agency 

(Study 4, ongoing work in Section 4.2) may be used to guide or improve control 

of external devices including robotic arms using BMI technology as well as to 

control prosthetic arms that are interfaced with the peripheral nervous system 
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and employ targeted reinnervation (Marasco et al., 2011; Navarro et al., 2005).  

More specifically, I foresee the need for these devices to be driven by complex 

algorithmic controllers that embed a hierarchical system of probabilistic models 

that account for signals at multiple tiers: sensorimotor, perceptual, and cognitive 

levels. To achieve this, sensors must measure current sensory configurations 

(e.g. proprioceptive, visual, and tactile states), and using probabilistic models 

such as those described in Study 3, may ascribe an online limb ownership 

probability. This information can be combined directly with data from brain 

sensors that capture ongoing neural measures of ownership (such as mu-rhythm 

oscillations; Study 1 and 2), agency (theta-rhythm activity (Cavanagh et al., 

2010); or insights from our ongoing work), and additional cognitive signals 

(Musallam et al., 2004). Finally, to close the loop and further boost performance, 

there will be a need for artificial feedback stimulators (tactile, proprioceptive, 

visual), that may be realized by direct cortical stimulation (OʼDoherty et al., 2011), 

robotics (Suminski et al, 2010), vibrotactile (Study 2), or pressure-based haptic 

devices (Marasco et al., 2008).  

To calibrate these controllers, rigorous perceptual training schemes 

utilizing psychophysics (Study 4; ongoing work in Section 4.2) and Bayesian 

techniques (Study 3) may be further exploited. Important to this calibration 

procedure will be a focus on the human experience of embodiment of such limbs, 

including the cognitive and perceptual effects of using the device. A human-

centric approach on neuroengineering may steer the development of algorithms 

that aim toward optimizing limb ownership and the sense of agency for the 

prosthetic device. 

Several major challenges remain to the utopian vision of cognitive motor 

neuroprosthetic controllers presented above (Lebedev and Nicolelis, 2006). Of 

critical importance will be the discovery of robust features obtained by the 

sensors (external sensory and neural) that reflect limb ownership and agency. In 

contrast to most of the work in this thesis describing phenomena observed with 

offline analysis, and often collected across multiple subjects and in cued designs, 
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these features will need to be reliably detected at the single-subject level from 
spontaneous, ongoing signals.  

Finally, given the current limitations of neural decoding, it is likely that a 

paired emphasis will need to be placed on shared control via hardware 

controllers (Millán et al., 2010). Using online, predictive algorithms based on 

learning models of an individualʼs natural movement statistics (Ingram et al., 

2008) may yield hardware controllers that predict ahead of time where the user is 

intending to move, independent to neural activity. In these novel contexts, 

research such as our ongoing work on SOA when actions precede 

consequences may better inform the limits of SOA for such machine-generated 

actions. We can imagine that these hardware devices may even improve on the 

imperfections of normal human motor behavior, preventing users from everyday 
clumsiness knocking over objects or stumbling. 

4.7 Conclusion 

As we progressively blur the lines between man and machine in our 

developments of technology-assisted tool use, tele-presence systems, medical 

robotics, and brain-machine interfaces, there is an increasing need to understand 

the neuronal, perceptual, and cognitive consequences of such a synergy. To 

work toward this end, I established a link between research in cognitive 

neuroscience and in brain-machine interfaces, concentrating on the two 

conceptual notions of ownership and agency. Furthermore, I strengthened the tie 

between these domains with methodologies including motor imagery paradigms, 

analytical techniques from psychophysics, machine learning, and Bayesian 

modeling, as well as technologies including haptic motors and sensors, virtual 

reality, neuroimaging, and real-time BMIs. I have outlined how future research 

using this approach can guide the design of cognitive motor neuroprosthetic 

devices that may restore lost motor function and aid in rehabilitation of patients 

suffering from limb loss, stroke, or paralysis. Moreover, I have highlighted how 
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our work on the sense of agency for brain-machine actions is of strong impact to 
society for its implications on legal and moral systems. 

Cross-disciplinary research always comes with the associated risk of 

scientific compromise in both disciplines (Horlick-Jones and Sime, 2004; Wickson 

et al., 2006; Klein, 2008). However, by using standard paradigms from both the 

cognitive neuroscience of bodily self-consciousness and the neuroengineering of 

brain-machine interfaces, I argue that the work in this thesis stays close to 

established standards while independently advancing ideas in both domains. 

Importantly, I believe that this work is of general scientific and societal interest 

and that future research can take inspiration from my approach toward the design 

of ecological and functional neuroprosthetic devices and toward a better 

understanding of how the human brain generates experiences such as owning a 
body and being the author of oneʼs actions. 
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Abbreviations 

BMI = brain-machine interface 

RHI = rubber hand illusion 

BOLD = blood- oxygen level dependent response  

PET =  positron emission tomography 

EEG =  electroencephalography 

MEG =  magnetoencephalography 

fMRI = functional magnetic resonance imaging 

NIRS = near infrared spectroscopy 

SEP =  somatosensory evoked potential 

MNI = Montreal Neurological Institute 

SOA =  sense of agency 
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